ERLANG

Erlang Run-Time System Application
(ERTS)

Copyright © 1997-2024 Ericsson AB. All Rights Reserved.
Erlang Run-Time System Application (ERTS) 12.3.2.15
April 10, 2024

Copyright © 1997-2024 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

April 10, 2024

1.1 Introduction

1 ERTS User's Guide

1.1 Introduction

1.1.1 Scope
The Erlang Runtime System Application, ERTS, contains functionality necessary to run the Erlang system.

By default, ERTS is only guaranteed to be compatible with other Erlang/OTP components from the same release
as ERTS itself.

For information on how to communi cate with Erlang/OTP componentsfrom earlier rel eases, see the documentation
of systemflag +Riner!| (1).

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

1.2 Communication in Erlang

Communication in Erlang is conceptually performed using asynchronous signaling. All different executing entities,
such as processes and ports, communicate through asynchronous signals. The most commonly used signal isamessage.
Other common signals are exit, link, unlink, monitor, and demonitor signals.

1.2.1 Passing of Signals

This information has been moved to the Sgnals section of the Processes chapter in the Erlang Reference Manual.

1.2.2 Synchronous Communication

This information has been moved to the Sgnals section of the Processes chapter in the Erlang Reference Manual.

1.2.3 Implementation

The implementation of different asynchronous signals in the virtual machine can vary over time, but the behavior
always respects this concept of asynchronous signals being passed between entities as described above.

By inspecting the implementation, you might notice that some specific signal gives a stricter guarantee than described
above. It is of vital importance that such knowledge about the implementation is not used by Erlang code, as the
implementation can change at any time without prior notice.

Examples of mgjor implementation changes:

« Asfrom ERTS5.5.2 exit signals to processes are truly asynchronously delivered.
e Asfrom ERTS5.10 all signals from processes to ports are truly asynchronously delivered.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 1

1.3 Time and Time Correction in Erlang

1.3 Time and Time Correction in Erlang

1.3.1 New Extended Time Functionality

As from Erlang/OTP 18 (ERTS 7.0) the time functionality has been extended. This includes a new API for time
and time warp modes that change the system behavior when system time changes.

The default time warp mode has the same behavior as before, and the old AP still works. Thus, you are not required
to change anything unless you want to. However, you ar e strongly encour aged to usethe new API instead of the
old APl based on er | ang: now/ 0. er | ang: now 0 isdeprecated, asit isand will be a scalability bottleneck.

By using the new API, you automatically get scalability and performance improvements. This also enables you to
use the multi-time warp mode that improves accuracy and precision of time measurements.

1.3.2 Terminology

To make it easier to understand this section, some terms are defined. Thisis a mix of our own terminology (Erlang/
OS system time, Erlang/OS monotonic time, time warp) and globally accepted terminology.

Monotonically Increasing

In a monatonically increasing sequence of values, all values that have a predecessor are either larger than or equal
to its predecessor.

Strictly Monotonically Increasing

In a strictly monotonically increasing sequence of values, all values that have a predecessor are larger than its
predecessor.

UTl
Universal Time. UT1 is based on the rotation of the earth and conceptually means solar time at 0° longitude.

e

Coordinated Universal Time. UTC almost aligns with UT1. However, UTC uses the SI definition of a second, which
has not exactly the same length as the second used by UT1. This means that UTC slowly drifts from UT1. To keep
UTC relatively in sync with UT1, leap seconds are inserted, and potentially also deleted. That is, an UTC day can be
86400, 86401, or 86399 seconds long.

POSIX Time

Timesince Epoch. Epoch isdefined to be 00:00:00 UTC, 1970-01-01. A day in POSIX timeisdefined to be exactly
86400 seconds long. Strangely enough, Epoch is defined to beatimein UTC, and UTC has another definition of how
long aday is. Quoting the Open Group " POSI X timeistherefore not necessarily UTC, despiteits appearance” .
The effect of thisis that when an UTC leap second is inserted, POSIX time either stops for a second, or repeats the
last second. If an UTC leap second would be deleted (which has not happened yet), POSIX time would make a one
second leap forward.

Time Resolution
The shortest time interval that can be distinguished when reading time values.

2 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

href
href
href

1.3 Time and Time Correction in Erlang

Time Precision

The shortest time interval that can be distinguished repeatedly and reliably when reading time values. Precision is
limited by the resolution, but resolution and precision can differ significantly.

Time Accuracy

The correctness of time values.

Time Warp

A timewarp is aleap forwards or backwardsin time. That is, the difference of time values taken before and after the
time warp does not correspond to the actual elapsed time.

OS System Time

The operating systems view of POSIX time. To retrieveit, call os: system ti ne() . Thismay or may not be an
accurate view of POSIX time. This time may typically be adjusted both backwards and forwards without limitation.
That is, time warps may be observed.

To get information about the Erlang runtime system's source of OS system time, call
erl ang: system.info(os_systemtinme_source).
OS Monotonic Time

A monotonically increasing time provided by the OS. This time does not leap and has arelatively steady frequency
although not completely correct. However, it isnot uncommon that OS monotonic time stopsif the systemis suspended.
Thistime typically increases since some unspecified point in time that is not connected to OS system time. Thistype
of timeis not necessarily provided by all OSs.

To get information about the Erlang runtime system's source of OS monotonic time, call
erl ang: system.info(os_nonotonic_tinme_source).

Erlang System Time

The Erlang runtime systems view of POSIX time. Toretrieveit, call er | ang: system ti me() .

This time may or may not be an accurate view of POSIX time, and may or may not align with OS system time. The
runtime system works towards aligning the two system times. Depending on the time warp mode used, this can be
achieved by letting Erlang system time perform atime warp.

Erlang Monotonic Time

A monotonically increasing time provided by the Erlang runtime system. Erlang monotonic time increases since some
unspecified point intime. To retrieveit, call er | ang: nonot oni c_ti ne().

The accuracy and precision of Erlang monotonic time heavily depends on the following:

e Accuracy and precision of OS monotonic time
e Accuracy and precision of OS system time
e timewarp mode used

On a system without OS monotonic time, Erlang monotonic time guarantees monotonicity, but cannot give other
guarantees. The frequency adjustments made to Erlang monotonic time depend on the time warp mode used.

Internally in the runtime system, Erlang monatonic time is the "time engine" that is used for more or less everything
that has anything to do with time. All timers, regardlessof itisar ecei ve ... after timer, BIFtimer, or atimer
inthet i mer (3) module, aretriggered relative Erlang monotonic time. Even Erlang system timeis based on Erlang
monotonic time. By adding current Erlang monotonic timewith current time offset, you get current Erlang systemtime.

Toretrieve the current time offset, call er | ang: ti me_of f set/ 0.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 3

1.3 Time and Time Correction in Erlang

1.3.3 Introduction

Timeisvital to an Erlang program and, more importantly, correct timeisvita to an Erlang program. As Erlang isa
language with soft real -time properties and we can expresstimein our programs, the Virtual Machine and the language
must be careful about what is considered a correct time and in how time functions behave.

When Erlang was designed, it was assumed that the wall clock time in the system showed a monotonic time moving
forward at exactly the same pace as the definition of time. Thismore or less meant that an atomic clock (or better time
source) was expected to be attached to your hardware and that the hardware was then expected to be locked away from
any human tinkering forever. While this can be a compelling thought, it is simply never the case.

A "normal" modern computer cannot keep time, not on itself and not unless you have a chip-level atomic clock wired
to it. Time, as perceived by your computer, must normally be corrected. Hence the Network Time Protocol (NTP)
protocol, together with the nt pd process, does its best to keep your computer time in sync with the correct time.
Between NTP corrections, usually aless potent time-keeper than an atomic clock is used.

However, NTP is not fail-safe. The NTP server can be unavailable, nt p. conf can be wrongly configured, or
your computer can sometimes be disconnected from Internet. Furthermore, you can have a user (or even system
administrator) who thinks the correct way to handle Daylight Saving Time isto adjust the clock one hour two times a
year (which is the incorrect way to do it). To complicate things further, this user fetched your software from Internet
and has not considered what the correct time is as perceived by a computer. The user does not care about keeping the
wall clock in sync with the correct time. The user expects your program to have unlimited knowledge about the time.

Most programmers al so expect timeto bereliable, at least until they realizethat thewall clock time on their workstation
is off by aminute. Then they set it to the correct time, but most probably not in a smooth way.

The number of problems that arise when you always expect the wall clock time on the system to be correct can be
immense. Erlang therefore introduced the "corrected estimate of time", or the "time correction”, many years ago.
The time correction relies on the fact that most operating systems have some kind of monotonic clock, either areal-
time extension or some built-in "tick counter" that is independent of the wall clock settings. This counter can have
microsecond resolution or much less, but it has a drift that cannot be ignored.

1.3.4 Time Correction

If time correction is enabled, the Erlang runtime system makes use of both OS system time and OS monotonic time,
to adjust the frequency of the Erlang monotonic clock. Time correction ensures that Erlang monotonic time does not
warp and that the frequency isrelatively accurate. The type of frequency adjustments depends on the time warp mode
used. Section Time Warp Modes provides more details.

By default time correction is enabled if support for it exists on the specific platform. Support for it
includes both OS monotonic time, provided by the OS, and an implementation in the Erlang runtime
system using OS monotonic time. To check if your system has support for OS monotonic time, call
erl ang: system.i nfo(os_nonotonic_tinme_source). To check if time correction is enabled on your
system, call er |l ang: system i nfo(time_correction).

To enable or disable time correction, pass command-lineargument +c [true| fal se] toerl (1).

If time correction is disabled, Erlang monotonic time can warp forwards or stop, or even freeze for extended periods
of time. There are then no guarantees that the frequency of the Erlang monotonic clock is accurate or stable.

You typically never want to disable time correction. Previously a performance penalty was associated with time
correction, but nowadays it is usually the other way around. If time correction is disabled, you probably get bad
scalability, bad performance, and bad time measurements.

1.3.5 Time Warp Safe Code

Time warp safe code can handle atime warp of Erlang system time.

4 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

er | ang: now 0 behavesbad when Erlang system timewarps. When Erlang system time doesatimewarp backwards,
the values returned from er | ang: now O freeze (if you disregard the microsecond increments made because of the
actual call) until OS system time reaches the point of the last value returned by er | ang: now 0. This freeze can
continue for along time. It can take years, decades, and even longer until the freeze stops.

All usesof er | ang: now' 0 are not necessarily time warp unsafe. If you do not useit to get time, it istime warp safe.
However, all usesof er | ang: now 0 are suboptimal from a performance and scalability perspective. So you really
want to replace the use of it with other functionality. For examples of how to replace the use of er | ang: now 0,
see section How to Work with the New API.

1.3.6 Time Warp Modes

Current Erlang system time is determined by adding the current Erlang monotonic time with current time offset. The
time offset is managed differently depending on which time warp mode you use.

To set the time warp mode, pass command-line argument +C [no_ti me_war p| si ngl e_ti ne_war p|
multi _time_warp] toerl (1).

No Time Warp Mode

The time offset is determined at runtime system start and does not change later. Thisis the default behavior, but not
because it is the best mode (which it is not). It is default only because this is how the runtime system behaved until
ERTS 7.0. Ensure that your Erlang code that can execute during atime warp is time warp safe before enabling other
modes.

Asthetime offset is not allowed to change, time correction must adjust the frequency of the Erlang monotonic clock
to align Erlang system time with OS system time smoothly. A significant downside of this approach is that we on
purpose will use a faulty frequency on the Erlang monotonic clock if adjustments are needed. This error can be as
large as 1%. This error will show up in al time measurementsin the runtime system.

If time correction is not enabled, Erlang monotonic time freezes when OS system time leaps backwards. The freeze of
monatonic time continues until OS system time catches up. The freeze can continue for along time. When OS system
time leaps forwards, Erlang monotonic time also leaps forward.

Single Time Warp Mode

This mode is more or less a backward compatibility mode as from itsintroduction.

On an embedded system it is not uncommon that the system has no power supply, not even a battery, when it is shut
off. The system clock on such a system is typicaly way off when the system boots. If no time warp mode is used,
and the Erlang runtime system is started before OS system time has been corrected, Erlang system time can be wrong
for along time, centuries or even longer.

If you need to use Erlang code that is not time warp safe, and you need to start the Erlang runtime system before OS
system time has been corrected, you may want to use the single time warp mode.

There are limitations to when you can execute time warp unsafe code using this mode. If it is possible to use time
warp safe code only, it is much better to use the multi-time warp mode instead.

Using the single time warp mode, the time offset is handled in two phases:
Preliminary Phase

This phase starts when the runtime system starts. A preliminary time offset based on current OS system timeis
determined. This offset isfrom now on to be fixed during the whole preliminary phase.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 5

1.3 Time and Time Correction in Erlang

If time correction is enabled, adjustmentsto the Erlang monotonic clock are made to keep its frequency as correct
as possible. However, no adjustments are made trying to align Erlang system time and OS system time. That
is, during the preliminary phase Erlang system time and OS system time can diverge from each other, and no
attempt is made to prevent this.

If time correction is disabled, changes in OS system time affects the monotonic clock the same way as when the
no time warp mode is used.

Final Phase

Thisphase beginswhentheuser finalizesthetimeoffset by callinger | ang: system fl ag(ti ne_of f set,
finalize).Thefinaization can only be performed once.

During finalization, the time offset is adjusted and fixed so that current Erlang system time aligns with the current
OS system time. As the time offset can change during the finalization, Erlang system time can do atime warp at
this point. The time offset is from now on fixed until the runtime system terminates. If time correction has been
enabled, the time correction from now on also makes adjustments to align Erlang system time with OS system
time. When the system isin the final phase, it behaves exactly asin no time warp mode.

In order for thisto work properly, the user must ensure that the foll owing two requirements are satisfied:
Forward Time Warp

The time warp made when finalizing the time offset can only be done forwards without encountering problems.
Thisimplies that the user must ensure that OS system time is set to atime earlier or equal to actual POSIX time
before starting the Erlang runtime system.

If you are not surethat OS system timeis correct, set it to atimethat is guaranteed to be earlier than actual POSIX
time before starting the Erlang runtime system, just to be safe.

Finalize Correct OS System Time
OS system time must be correct when the user finalizes the time offset.
If these requirements are not fulfilled, the system may behave very bad.

Assuming that these requirements are fulfilled, time correction is enabled, and OS system time is adjusted using a
time adjustment protocol such as NTP, only small adjustments of Erlang monotonic time are needed to keep system
times aligned after finalization. Aslong as the system is not suspended, the largest adjustments needed are for inserted
(or deleted) leap seconds.

To use this mode, ensure that al Erlang code that will execute in both phases is time warp safe.

Code executing only in the final phase does not have to be able to cope with the time warp.

Multi-Time Warp Mode

Multi-time war p mode in combination with time correction is the preferred configuration. This as the Erlang
runtime system have better performance, scale better, and behave better on ailmost all platforms. Also, the accuracy
and precision of time measurements are better. Only Erlang runtime systems executing on ancient platforms benefit
from another configuration.

The time offset can change at any time without limitations. That is, Erlang system time can perform time warps both
forwards and backwards at any time. Aswe align Erlang system time with OS system time by changing the time offset,
we can enable a time correction that tries to adjust the frequency of the Erlang monotonic clock to be as correct as
possible. This makes time measurements using Erlang monotonic time more accurate and precise.

6 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

If time correction is disabled, Erlang monotonic time leaps forward if OS system time leaps forward. If OS system
time leaps backwards, Erlang monotonic time stops briefly, but it does not freeze for extended periods of time. This
asthe time offset is changed to align Erlang system time with OS system time.

To use this mode, ensure that al Erlang code that will execute on the runtime system is time warp safe. ‘

1.3.7 New Time API

Theoldtime APl isbasedoner | ang: now 0.er | ang: nhow 0 wasintended to be used for many unrelated things.
Thistied these unrelated operations together and caused issues with performance, scalability, accuracy, and precision
for operations that did not need to have such issues. To improve this, the new API spreads different functionality over
multiple functions.

To be backward compatible, er | ang: now 0 remains "as is’, but you are strongly discouraged from using it.
Many use cases of er | ang: now/ 0 prevents you from using the new multi-time warp mode, which is an important
part of this new time functionality improvement.

Some of the new BIFson some systems, perhaps surprisingly, return negative integer values on anewly started runtime
system. Thisis not a bug, but a memory use optimization.

The new API consists of the following new BIFs:

e erlang:convert _tine_unit/3
 erlang:nonotonic_tine/0

e erlang: nmonotonic_tine/l

e erlang:systemtine/0

e erlang:systemtine/l

e erlang:tinme_offset/0

e erlang:tinme_offset/1

e erlang:tinestanp/0

* erlang:unique_integer/0

e erlang:unique_integer/1

e o0s:systemtine/0

e o0s:systemtine/1l

The new API also consists of extensions of the following existing BIFs:

e erlang:monitor(tine_offset, clock_service)

e erlang:systemflag(time_offset, finalize)

« erlang: system.info(os_nonotonic_tinme_source)
e erlang:systeminfo(os_systemtinme_source)

e erlang:systeminfo(tine_offset)

e erlang:systeminfo(time_warp_node)

e erlang:systeminfo(tinme_correction)

e erlang:systeminfo(start_tine)

e erlang:systeminfo(end_tine)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 7

1.3 Time and Time Correction in Erlang

New Erlang Monotonic Time

Erlang monotonic time as suchisnew asfrom ERTS 7.0. It isintroduced to detach time measurements, such as elapsed
time from calendar time. In many use cases there is a need to measure elapsed time or specify a time relative to
another point in time without the need to know the involved timesin UTC or any other globally defined time scale.
By introducing a time scale with a local definition of where it starts, time that do not concern calendar time can be
managed on that time scale. Erlang monotonic time uses such atime scale with alocally defined start.

Theintroduction of Erlang monotonic time allows usto adjust the two Erlang times (Erlang monotonic time and Erlang
system time) separately. By doing this, the accuracy of elapsed time does not have to suffer just because the system
time happened to be wrong at some point in time. Separate adjustments of thetwo timesare only performed in thetime
warp modes, and only fully separated in the multi-time warp mode. All other modes than the multi-time warp mode
are for backward compatibility reasons. When using these modes, the accuracy of Erlang monotonic time suffer, as
the adjustments of Erlang monotonic time in these modes are more or less tied to Erlang system time.

The adjustment of system time could have been made smother than using a time warp approach, but we think that
would be abad choice. Aswe can express and measure time that is not connected to calendar time by the use of Erlang
monotonic time, it is better to expose the change in Erlang system time immediately. This as the Erlang applications
executing on the system can react on the change in system time as soon as possible. Thisis also more or less exactly
how most operating systems handl e this (OS monotonic time and OS system time). By adjusting system time smoothly,
we would just hide the fact that system time changed and make it harder for the Erlang applications to react to the
change in a sensible way.

To beableto react to achangein Erlang system time, you must be able to detect that it happened. The changein Erlang
system time occurs when the current time offset is changed. We have therefore introduced the possibility to monitor
the time offset using er | ang: nonitor (ti ne_of fset, clock_service). A process monitoring the time
offset is sent a message on the following format when the time offset is changed:

{'CHANGE', MonitorReference, time offset, clock service, NewTimeOffset}

Unique Values

Besidesreportingtime, er | ang: now 0 also produces unique and strictly monotonically increasing values. To detach
this functionality from time measurements, we have introduced er | ang: uni que_i nt eger () .

How to Work with the New API

Previoudly er | ang: now O was the only option for doing many things. This section deals with some things that
er | ang: now 0 can be used for, and how you use the new API.

Retrieve Erlang System Time

Useer | ang: now O to retrieve the current Erlang system time.

Useer | ang: syst em ti ne/ 1 toretrieve the current Erlang system time on the time unit of your choice.

If you want the same format asreturned by er | ang: now 0, useer | ang: t i nest anp/ 0.

8 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

Measure Elapsed Time

Don't:

Taketime stampswith er | ang: now/ 0 and calculate the differencein timewitht i mer: now _di f f/ 2.

Take time stamps with er | ang: nonotoni c_ti nme/ 0 and calculate the time difference using ordinary
subtraction. Theresultisin nat i ve time unit. If you want to convert the result to another time unit, you can use
erl ang: convert _tine_unit/3.

An easier way to do thisisto useer | ang: nonot oni c_t i ne/ 1 with the desired time unit. However, you can
then lose accuracy and precision.

Determine Order of Events

Don't:

Determine the order of events by saving atime stamp with er | ang: now' 0 when the event occurs.

Determinethe order of eventsby saving theinteger returned by er | ang: uni que_i nt eger ([nonot oni c])
when the event occurs. These integers are strictly monotonically ordered on current runtime system instance
corresponding to creation time.

Determine Order of Events with Time of the Event

Determine the order of events by saving atime stamp with er | ang: now' 0 when the event occurs.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 9

1.3 Time and Time Correction in Erlang

Determine the order of events by saving atuple containing monotonic time and a strictly monotonically increasing
integer asfollows:

Time = erlang:monotonic_time(),
UMI = erlang:unique integer([monotonic]),
EventTag = {Time, UMI}

These tuples are strictly monotonically ordered on the current runtime system instance according to creation time.
It isimportant that the monotonic time isin the first element (the most significant element when comparing two-
tuples). Using the monotonic time in the tuples, you can calculate time between events.

If you are interested in Erlang system time at the time when the event occurred, you can also save the time offset
before or after saving the eventsusing er | ang: t i ne_of f set / 0. Erlang monotonic time added with the time
offset corresponds to Erlang system time.

If you are executing in a mode where time offset can change, and you want to get the actual Erlang system time
when the event occurred, you can save the time offset as athird element in the tuple (the least significant element
when comparing three-tuples).

Create a Unique Name

Don't:

Use the values returned from er | ang: now/ 0 to create a name unique on the current runtime system instance.

Use the value returned from er | ang: uni que_i nt eger/ 0 to create a name unique on the current runtime
systeminstance. If you only want positive integers, you canuseer | ang: uni que_i nt eger ([posi tive]).

Seed Random Number Generation with a Unique Value

| Seed random number generation using er | ang: now() .

Don't:

Seed random number generation using a combination of erlang: nobnotonic_tine(),
erlang:time_of fset(),erl ang: uni que_i nt eger (), and other functionality.

To sum up this section: Do not useer | ang: now 0.

1.3.8 Support of Both New and Old OTP Releases

It can berequired that your code must run on avariety of OTP installations of different OTP releases. If so, you cannot
usethe new API out of the box, asit will not be available on releases before OTP 18. The solution isnot to avoid using
the new API, asyour code would then not benefit from the scalability and accuracy improvements made. Instead, use
the new APl when available, and fall back on er | ang: now 0 when the new API is unavailable.

Fortunately most of the new API can easily be implemented using existing primitives, except for:

10 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

* erlang:systeminfo(start_tine)

e erlang:systeminfo(end_tine)

« erlang: system.info(os_nonotonic_tinme_source)

e erlang:systeminfo(os_systemtinme_source)

By wrapping the APl with functions that fall back on er| ang: now 0 when the new API is unavailable, and

using these wrappers instead of using the API directly, the problem is solved. These wrappers can, for example, be
implemented asin $ERL_TOP/ertsexample/time _compat.erl.

1.4 Match Specifications in Erlang

A "match specification” (mat ch_spec) isan Erlang term describing asmall "program” that triesto match something.
It can be used to either control tracing with erlang:trace pattern/3 or to search for objects in an ETS table with for
example ets.select/2. The match specification in many ways works like a small function in Erlang, but is interpreted/
compiled by the Erlang runtime system to something much more efficient than calling an Erlang function. The match
specification is also very limited compared to the expressiveness of real Erlang functions.

The most notable difference between a match specification and an Erlang fun is the syntax. Match specifications are
Erlang terms, not Erlang code. Also, a match specification has a strange concept of exceptions:

* An exception (such as badar g) in the Mat chCondi t i on part, which resembles an Erlang guard, generates
immediate failure.

e Anexception in the Mat chBody part, which resembles the body of an Erlang function, isimplicitly caught and
resultsinthesingleatom' EXI T' .

1.4.1 Grammar

A match specification used in tracing can be described in the following infor mal grammar:

* MatchExpression ::= [MatchFunction, ...]

e MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

e MatchHead ::= MatchVariable|' ' |[MatchHeadPart, ...]

e MatchHeadPart ::= term() | MatchVariable|' '

e MatchVariable ::= '$<number>'

* MatchConditions ::= [MatchCondition, ...] | []

* MatchCondition ::= { GuardFunction } | { GuardFunction, ConditionExpression, ... }

* BoolFunction::=is_atom|is_float |is_integer |[is_list|is_nunber |is_pid]is_port
|[is reference|is_tuple]is_map|is_map_key|is_binary]|is_function|is_record|

is_seqg_trace|"and' |'or' |'not' |'xor' |'andal so' |' orel se'
e ConditionExpression ::= ExprMatchVariable | { GuardFunction} | { GuardFunction, ConditionExpression, ... }
| TermConstruct

» ExprMatchVariable ::= MatchVariable (bound in the MatchHead) |' $_' |' $$'

e TermConstruct = {{}} [{{ ConditionExpression, ... }} |[] | [ConditionExpression, ...] | #{} |#{term() =>
ConditionExpression, ...} | NonCompositeTerm | Constant

e NonCompositeTerm ::=term() (not list or tuple or map)
e Constant ::={const , term()}

e GuardFunction ::= BoolFunction | abs | el enent |hd || engt h |map_get |nap_si ze |node |r ound
|size|bit_size|tl |[trunc|"+" |"-"|"*" |'div' |'rem |'band' |'bor' |' bxor"' |
"bnot' |"bsl' |"bsr' |'>" |">=" |'<'" |'=<"|'"=="|'"=="|"=/="|'"I=" |self |get_tcw

* MatchBody ::=[ActionTerm]

* ActionTerm ::= ConditionExpression | ActionCall

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 11

href

1.4 Match Specifications in Erlang

« ActionCdl ::={ActionFunction} | { ActionFunction, ActionTerm, ...}

e ActionFunction::=set _seq_t oken|get _seq_t oken|nessage |return_trace|
exception_trace|process_dunp|enabl e _trace|di sable trace|trace |display|
caller |set _tcw]|silent

A match specification usedin et s(3) can be described in the following informal grammar:

* MatchExpression ::= [MatchFunction, ...]

e MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

* MatchHead ::= MatchVariable|"' _' [{ MatchHeadPart, ... }

e MatchHeadPart ::= term() | MatchVariable |' '

« MatchVariable ::= '$<number>'

* MatchConditions ::= [MatchCondition, ...] | []

* MatchCondition ::= { GuardFunction } | { GuardFunction, ConditionExpression, ... }

e BoolFunction::=is_atom|is_float |is_integer |[is_list|is_nunber |is_pid]is_port
|[is reference|is_tuplel]is_map|map_is_key|is_binary]|is_function|is_record]|

"and' |'or' |'not' |'xor' |'andal so' |' orel se'
e ConditionExpression ::= ExprMatchVariable | { GuardFunction} | { GuardFunction, ConditionExpression, ... }
| TermConstruct

» ExprMatchVariable ::= MatchVariable (bound in the MatchHead) |' $_' |' $$'

o TermConstruct = {{}} |{{ ConditionExpression, ... }} |[] | [ConditionExpression, ...] | #} |#{term() =>
ConditionExpression, ...} | NonCompositeTerm | Constant

e NonCompositeTerm ::=term() (not list or tuple or map)
e Constant ::={const , term()}

e GuardFunction ::= BoolFunction | abs | el ement |hd |l engt h |map_get |map_si ze |node |r ound
|size|bit_size|tl |trunc| "+ ["-"["*" |'div' |"rem |'band' |' bor' |'bxor' |
"bnot' |"bsl' |"bsr' |'> |'>=" |'< |'=<"|'"=: =" |"=="[|"=/[=|"]=" |self

* MatchBody ::=[ConditionExpression, ...]

1.4.2 Function Descriptions

Functions Allowed in All Types of Match Specifications
The functionsalowed in mat ch_spec work asfollows:
is_ atomis float,is integer,is list,is nunber,is pid,is_port,is_reference,
is tuple,is map,is_binary,is function
Same as the corresponding guard testsin Erlang, returnt r ue or f al se.
is record

Takes an additional parameter, which must betheresult of r ecor d_i nf o(si ze, <record_type>),like
in{is_record, '$1', rectype, record_info(size, rectype)}.

not
Negates its single argument (anything other than f al se givesf al se).

and’

Returnst r ue if all itsarguments (variablelength argument list) evaluatetot r ue, otherwisef al se. Evaluation
order is undefined.

12 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

or
Returns t r ue if any of its arguments evaluates to t r ue. Variable length argument list. Evaluation order is
undefined.

' andal so'
Worksas' and' , but quits evaluating its arguments when one argument eval uates to something elsethant r ue.
Arguments are evaluated |eft to right.

'orel se'
Worksas' or' , but quits evaluating as soon asone of itsargumentsevaluatestot r ue. Arguments are evaluated
left to right.

' xor'

Only two arguments, of which onemust bet r ue andthe other f al se toreturnt r ue; otherwise' xor"' returns
false.

abs, el enent, hd, | engt h, map_get , map_si ze, node, round, si ze,bi t _si ze,tl ,trunc,' +',
tetytxrtdivt ' remtt band' " bor' "t bxor', ' bnot' " bsl' " bsrt >t > < =<

==, ==, =" self

Same asthe corresponding Erlang BIFs (or operators). In case of bad arguments, the result depends on the context.
In the Mat chCondi t i ons part of the expression, the test fails immediately (like in an Erlang guard). In the
Vat chBody part, exceptions are implicitly caught and the call resultsintheatom ' EXI T' .

Functions Allowed Only for Tracing

The functions allowed only for tracing work as follows:

i s_seq_trace
Returnst r ue if asequential trace token is set for the current process, otherwisef al se.

set _seq_t oken

Worksasseq_trace: set _token/ 2, but returnst r ue on success, and' EXI T' on error or bad argument.
Only allowed in the Mat chBody part and only allowed when tracing.

get _seq_t oken
Sameasseq_trace: get _t oken/ 0 and only allowed in the Mat chBody part when tracing.
nessage

Sets an additional message appended to the trace message sent. One can only set one additional message in the
body. Later calls replace the appended message.

As a specia case, { message, fal se} disables sending of trace messages (‘call' and 'return_to') for this
function call, just like if the match specification had not matched. This can be useful if only the side effects of
the Mat chBody part are desired.

Another special caseis{ nessage, true}, which setsthe default behavior, asif the function had no match
specification; trace message is sent with no extra information (if no other calls to message are placed before
{message, true},itisinfacta"noop").

Takes one argument: the message. Returnst r ue and can only beused inthe Mat chBody part and when tracing.
return_trace

Causesar et ur n_f r omtrace message to be sent upon return from the current function. Takes no arguments,
returnst r ue and can only be used in the Mat chBody part when tracing. If the process trace flag si | ent is
active, ther et ur n_f r omtrace messageis inhibited.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 13

1.4 Match Specifications in Erlang

Warning: If the traced function istail-recursive, this match specification function destroysthat property. Hence,
if a match specification executing this function is used on a perpetual server process, it can only be active for
alimited period of time, or the emulator will eventually use all memory in the host machine and crash. If this
match specification function isinhibited using process trace flag si | ent , tail-recursiveness still remains.

exception_trace

Worksasr et urn_t race plus; if the traced function exits because of an exception, an excepti on_from
trace message is generated, regardless of the exception is caught or not.

process_dunp

Returns some textual information about the current process as a binary. Takes no arguments and is only allowed
in the Mat chBody part when tracing.

enabl e trace

With one parameter this function turns on tracing like the Erlang call er | ang: trace(sel f (), true,
[P2]) , where P2 isthe parameter to enabl e_t r ace.

With two parameters, the first parameter is to be either a process identifier or the registered name of a
process. In this case tracing is turned on for the designated process in the same way as in the Erlang call
erlang:trace(Pl, true, [P2]),wherePl isthefirstand P2 isthe second argument. The process P1
gets its trace messages sent to the same tracer as the process executing the statement uses. P1 cannot be one
of theatomsal | , newor exi st i ng (unlessthey are registered names). P2 cannot becpu_t i mest anp or
tracer.

Returnst r ue and can only be used in the Mat chBody part when tracing.
di sabl e_trace

With one parameter this function disables tracing like the Erlang call er | ang: trace(sel f (), fal se,
[P2]) , where P2 isthe parameter to di sabl e_trace.

With two parameters this function works as the Erlang call er| ang: trace(P1, false, [P2]),where
P1 can be either a process identifier or a registered name and is specified as the first argument to the match
specification function. P2 cannot becpu_ti nestanportracer.

Returnst r ue and can only be used in the Mat chBody part when tracing.
trace

With two parameters this function takes a list of trace flags to disable as first parameter and a list of trace
flags to enable as second parameter. Logically, the disable list is applied first, but effectively al changes are
applied atomically. The trace flags are the same as for er | ang: t r ace/ 3, not including cpu_t i mest anp,
but includingt r acer.

If atracer is specified in both lists, the tracer in the enable list takes precedence. If no tracer is specified, the same
tracer as the process executing the match specification is used (not the meta tracer). If that process doesn't have
tracer either, then trace flags are ignored.

When using a tracer module, the module must be loaded before the match specification is executed. If it is not
loaded, the match fails.

With three parameters to this function, the first is either a process identifier or the registered name of a process
to set trace flags on, the second is the disable list, and the third is the enable list.

Returnst r ue if any trace property was changed for the trace target process, otherwisef al se. Can only be used
in the Mat chBody part when tracing.

call er

Returns the calling function as a tuple { Modul e, Function, Arity} orthe atom undefi ned if the
calling function cannot be determined. Can only be used in the Mat chBody part when tracing.

14 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

Notice that if a "technically built in function” (that is, a function not written in Erlang) is traced, the cal | er
function sometimesreturnsthe atom undef i ned. The caling Erlang function is not available during such calls.

di spl ay

For debugging purposes only. Displaysthe single argument as an Erlang term on st dout , which is seldom what
iswanted. Returnst r ue and can only be used in the Mat chBody part when tracing.

get _tcw

Takes no argument and returns the value of the node's trace control word. The same is done by
erl ang: system.info(trace control _word).

Thetrace control word is a 32-bit unsigned integer intended for generic trace control. The trace control word can
betested and set both from within trace match specificationsand with BIFs. Thiscall isonly allowed whentracing.

set _tcw

Takes one unsigned integer argument, setsthe value of the node's trace control word to the value of the argument,
and returns the previous value. The same is done by er | ang: system fl ag(trace_control _word,
Val ue) . Itisonly alowed to useset _t cwin the Mat chBody part when tracing.

sil ent

Takes one argument. If theargument ist r ue, the call trace message mode for the current processis set to silent
for this call and al later calls, that is, call trace messages are inhibited even if { message, true} iscaled
in the Mat chBody part for atraced function.

This mode can aso be activated with flag si | ent toer| ang: trace/ 3.

If the argument isf al se, the call trace message mode for the current process is set to normal (non-silent) for
thiscall and all later calls.

If theargumentisnott r ue or f al se, the call trace message mode is unaffected.

All "function calls* must be tuples, even if they take no arguments. The value of sel f isthe atom() sel f, but
thevalueof { sel f} isthe pid() of the current process.

1.4.3 Match target

Each execution of amatch specification is done against a match target term. The format and content of the target term
depends on the context in which the match is done. The match target for ETS is aways afull table tuple. The match
target for call trace is always alist of al function arguments. The match target for event trace depends on the event
type, see table below.

Context Type Match target Description
ETS {Key, Vauel, Vaue?, ...} |A tableobject
Trace call [Argl, Arg2, ...] Function arguments

Receiving process/port and

Trace send [Receiver, Message] m e term

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 15

1.4 Match Specifications in Erlang

Sending node, process/port

Trace 'receive [Node, Sender, Message] andm o term

Table 4.1: Match target depending on context

1.4.4 Variables and Literals

Variables take the form ' $<nunber >' , where <numrber > is an integer between 0 and 100,000,000 (1e+8). The
behavior if the number isoutside theselimitsisundefined. Inthe Mat chHead part, the special variable' _' matches
anything, and never gets bound (like _ in Erlang).

* IntheMat chCondi ti on/ Mat chBody parts, no unbound variablesarealowed, so' ' isinterpreted asitself
(an atom). Variables can only be bound in the Mat chHead part.

e Inthe Mat chBody and Mat chCondi t i on parts, only variables bound previously can be used.

» Asagpecial case, the following apply in the Mat chCondi t i on/ Mat chBody parts:

* Thevariable' $_' expands to the whole match target term.
e The variable ' $$' expands to a list of the values of al bound variables in order (that is,
["$1',"%2", ...]).
Inthe Mat chHead part, al literals (except the variables above) are interpreted "asis’.

In the Mat chCondi t i on/ Mat chBody parts, the interpretation is in some ways different. Literals in these parts
can either be written "asis", which works for all literals except tuples, or by using the special form { const, T},
where T isany Erlang term.

For tuple literas in the match specification, double tuple parentheses can also be used, that is, construct them as a
tuple of arity one containing asingle tuple, which is the one to be constructed. The "double tuple parenthesis’ syntax
is useful to construct tuples from already bound variables, likein{{' $1', [a, b,' $2']}}. Examples:

Expression Variable Bindings Result

{{'s1',/'$2}} '$1'=a,'$2=b {ab}

{const, {'$1', '$2'}} Irrelevant {'$1, '$2}

a Irrelevant a

3T B =] (]

[$1] B =] (1]

[{{a}}] Irrelevant [{a}]

42 Irrelevant 42

"hello” Irrelevant "hello”

$1 Irrelevant 49 (the ASCII value for character '1")

Table 4.2: Literals in MatchCondition/MatchBody Parts of a Match Specification

16 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

1.4.5 Execution of the Match

The execution of the match expression, when the runtime system decides whether a trace message is to be sent, is
asfollows:

For each tuple in the Mat chExpr essi on list and while no match has succeeded:

* Match the Mat chHead part against the match target term, binding the ' $<nunber >' variables (much likein
et s: mat ch/ 2). If the Mat chHead part cannot match the arguments, the match fails.

» Evauateeach Mat chCondi ti on (whereonly ' $<nunber >' variables previously bound in the Mat chHead
part can occur) and expect it to return the atom t r ue. When a condition does not evaluate to t r ue, the match
fails. If any BIF call generates an exception, the match also falils.

« Two cases can occur:
« |f the match specification is executing when tracing:

Evaluate each Act i onTer min the same way as the Mat chCondi t i ons, but ignore the return values.
Regardless of what happens in this part, the match has succeeded.

« |If the match specification is executed when selecting objects from an ETS table:
Evaluate the expressions in order and return the value of the last expression (typicaly there is only one

expression in this context).
1.4.6 Differences between Match Specifications in ETS and Tracing

ETS match specifications produce a return value. Usudly the W©MatchBody contains one single
Condi ti onExpr essi on that defines the return value without any side effects. Calls with side effects are not
allowed in the ETS context.

When tracing thereis no return value to produce, the match specification either matches or does not. The effect when
the expression matches is a trace message rather than a returned term. The Act i onTer s are executed as in an
imperative language, that is, for their side effects. Functions with side effects are also allowed when tracing.

1.4.7 Tracing Examples

Match an argument list of three, where the first and third arguments are equal:

({C's1*, '_", '$1'],
]I
131

Match an argument list of three, where the second argument is a number > 3:

—r——

({r_", 's1, ' 'l,
[({ '=', '"$1', 3},
[1}]
Match an argument list of three, where the third argument is either a tuple containing argument one and two, or alist
beginning with argument oneand two (thatis,[a, b, [a, b, c]] or[a, b, {a, b}]):

[{['$1", "$2', '$3'],

[{'orelse',
'=i=", '$3', {{'$1','$2'}}},
{'and'
{'=:=", '$1', {hd, '$3'}},
. {'=:=", '$2", {hd, {tl, "$3'}}}}}1,

The above problem can a so be solved as follows:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 17

1.4 Match Specifications in Erlang

({r'$1', "$2', {'$1', '$2}1, [1, [1},
{0'$1*, "$2', ['$1', "$2" | '_'11, [1, [I}]

Match two arguments, where the first is a tuple beginning with a list that in turn begins with the second argument
timestwo (thatis, [{[4, x],y},2] or[{[8], V¥, z},4]):

({r's1+, "$2'1,[{'=:=", {"*", 2, '$2'}, {hd, {element, 1, '$1'}}}],
[1}]

Match three arguments. When all three are equal and are numbers, append the process dump to the trace message,
otherwise let the trace message be "asis", but set the sequential trace token label to 4711:

[{['$1", "$1', '$1'],
[{is_number, '$1'}],
[{message, {process dump}}1},
{' ', [1, [{set seq token, label, 4711}1}]

Ascan be noted above, the parameter list can be matched against asingleMat chVar i abl eoran' _' . Toreplacethe
whole parameter list with asingle variableis aspecial case. In all other cases the Mat chHead must be aproper list.

Generate a trace message only if the trace control word is set to 1:

[{I_I ’
[{'==',{get_tcw},{const, 1}}1I,
[1}]

Generate atrace message only if thereisaseq_t r ace token:

({_"
[{'==',{is _seq trace},{const, 1}}1,
[1}1]

Removethe' si | ent' traceflag when thefirst argumentis' ver bose' , and add it whenitis' sil ent' :

[{'$1',
[{'==",{hd, '$1'},verbose}],
[{trace, [silent],[1}1},
{'$1',
[{'==",{hd, '$1'},silent}],

[{trace, [],[silent]}]1}]

Addar et urn_trace messageif the function is of arity 3:

[{'$1',
[{'==",{length, '$1'},3}],
[{return_trace}l},

{'_"[1,11}]
Generate a trace message only if the function is of arity 3 and thefirst argumentis' t r ace' :
['trace','$2','$3'],
[1,
(1},
{'_" 11,11}

[{

1.4.8 ETS Examples

Match all objectsin an ETS table, where the first elementistheatom ' st ri der' and the tuple arity is 3, and return
the whole object:

18 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

[{{strider,"' ',' '},
[1,
['$ "1}]
Match all objectsin an ETStable with arity > 1 and the first element is'gandalf’, and return element 2:

[{'$1",
[{'==', gandalf, {element, 1, '$1'}},{'>=",{size, '$1'},2}1,
[{element,2,'$1'}1}]

In this example, if the first element had been the key, it is much more efficient to match that key in the Mat chHead
part thanintheMat chCondi t i ons part. The search space of thetablesisrestricted with regardsto the Mat chHead
so that only objects with the matching key are searched.

Match tuples of three elements, where the second element is either ' nerry' or' pi ppi n', and return the whole
objects:

[{{'_",merry,' '},
[,
['$ 13,

{E]'_' ,Ppippin, ' '},
['$ '1}]

Functionet s: t est _ns/ 2> can be useful for testing complicated ETS matches.

1.5 How to Interpret the Erlang Crash Dumps

This section describestheer | _cr ash. dunp file generated upon abnormal exit of the Erlang runtime system.

The Erlang crash dump had a mgjor facelift in Erlang/OTP R9C. The information in this section is therefore not
directly applicable for older dumps. However, if you use cr ashdunp_vi ewer (3) on older dumps, the crash
dumps are trandlated into a format similar to this.

The system writes the crash dump in the current directory of the emulator or in the file pointed out by the environment
variable (whatever that means on the current operating system) ERL_ CRASH_DUMP. For a crash dump to be written,
awritable file system must be mounted.

Crash dumps are written mainly for one of two reasons. either the built-in function er | ang: hal t/ 1 is called
explicitly with a string argument from running Erlang code, or the runtime system has detected an error that cannot
be handled. The most usual reason that the system cannot handle the error is that the cause is external limitations,
such as running out of memory. A crash dump caused by an internal error can be caused by the system reaching limits
in the emulator itself (like the number of atoms in the system, or too many simultaneous ETS tables). Usually the
emulator or the operating system can be reconfigured to avoid the crash, which is why interpreting the crash dump
correctly isimportant.

On systemsthat support OS signals, it isalso possibleto stop the runtime system and generate a crash dump by sending
the SI GUSR1 signal.

The Erlang crash dump is areadable text file, but it can be difficult to read. Using the Crashdump Viewer tool in the
oser ver application simplifies the task. Thisis awx-widget-based tool for browsing Erlang crash dumps.

1.5.1 General Information
Thefirst part of the crash dump shows the following:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 19

1.5 How to Interpret the Erlang Crash Dumps

e The creation time for the dump

e A dogan indicating the reason for the dump

* The system version of the node from which the dump originates
* Thenumber of atomsin the atom table

* Theruntime system thread that caused the crash dump

Reasons for Crash Dumps (Slogan)

The reason for the dump is shown in the beginning of the file as:

Slogan: <reason>

If the system is halted by the BIF er | ang: hal t / 1, the slogan is the string parameter passed to the BIF, otherwise
it isadescription generated by the emulator or the (Erlang) kernel. Normally the message is enough to understand the
problem, but some messages are described here. Notice that the suggested reasons for the crash are only suggestions.
The exact reasons for the errors can vary depending on the local applications and the underlying operating system.

<A>: Cannot allocate <N> bytes of memory (of type" <T>")

The system has run out of memory. <A> is the allocator that failed to allocate memory, <N> is the number of
bytes that <A> tried to alocate, and <T> is the memory block type that the memory was needed for. The most
common case is that a process stores huge amounts of data. In this case <T> is most often heap, ol d_heap,
heap_frag, or bi nary. For more information on allocators, seeerts_al | oc(3).

<A>: Cannot reallocate <N> bytes of memory (of type" <T>")

Same as above except that memory was reallocated instead of allocated when the system ran out of memory.
Unexpected op code <N>

Error in compiled code, beamfile damaged, or error in the compiler.

Module <Name> undefined | Function <Name> undefined | No function <Name>:<Name>/1| No function
<Name>:start/2

The Kernel/STDLIB applications are damaged or the start script is damaged.
Driver_select called with too largefile descriptor N

The number of file descriptors for sockets exceeds 1024 (Unix only). The limit on file descriptors in some Unix
flavors can be set to over 1024, but only 1024 sockets/pipes can be used simultaneously by Erlang (because of
limitations in the Unix sel ect call). The number of open regular filesis not affected by this.

Received SIGUSR1

Sending the SI GUSRL1 signal to an Erlang machine (Unix only) forces a crash dump. This slogan reflects that
the Erlang machine crash-dumped because of receiving that signal.

Kernd pid terminated (<Who>) (<EXxit reason>)

The kernel supervisor has detected a failure, usualy that the appl i cati on_control | er has shut down
(Who=application_controller,Wy=shut down). Theapplication controller can have shut down for
many reasons, the most usual is that the node name of the distributed Erlang node is already in use. A complete
supervisor tree "crash" (that is, the top supervisors have exited) gives about the same result. This message comes
from the Erlang code and not from the virtual machineitself. It isalwaysbecause of somefailurein an application,
either within OTP or a"user-written" one. Looking at the error log for your application is probably the first step
to take.

20 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

I nit terminating in do_boot ()

The primitive Erlang boot sequence was terminated, most probably because the boot script has errors or cannot
be read. Thisis usually a configuration error; the system can have been started with a faulty - boot parameter
or with aboot script from the wrong OTP version.

Could not start kernel pid (<Who>) ()

One of the kernel processes could not start. This is probably because of faulty arguments (like errorsin a -
confi g argument) or faulty configuration files. Check that all files are in their correct location and that the
configuration files (if any) are not damaged. Usually messages are also written to the controlling terminal and/
or the error log explaining what iswrong.

Other errors than these can occur, as the er | ang: hal t/ 1 BIF can generate any message. If the message is not
generated by the BIF and does not occur in the list above, it can be because of an error in the emulator. There can
however be unusual messages, not mentioned here, which are still connected to an application failure. There is much
more information available, so athorough reading of the crash dump can reveal the crash reason. The size of processes,
the number of ETS tables, and the Erlang data on each process stack can be useful to find the problem.

Number of Atoms

The number of atoms in the system at the time of the crash is shown as Atoms: <number>. Some ten thousands
atomsis perfectly normal, but more canindicatethat theBIF er | ang: | i st _t o_at om 1 isused to generate many
different atoms dynamically, which is never a good idea.

1.5.2 Scheduler Information

Under the tag =scheduler is shown information about the current state and statistics of the schedulersin the runtime
system. On operating systems that allow suspension of other threads, the data within this section reflects what the
runtime system looks like when a crash occurs.

The following fields can exist for a process:
=scheduler:id

Heading. States the scheduler identifier.
Scheduler Sleep Info Flags

If empty, the scheduler was doing some work. If not empty, the scheduler is either in some state of sleep, or
suspended.

Scheduler Sleep Info Aux Work

If not empty, ascheduler internal auxiliary work is scheduled to be done.
Current Port

The port identifier of the port that is currently executed by the scheduler.
Current Process

The process identifier of the process that is currently executed by the scheduler. If there is such a process, this
entry isfollowed by the State, Internal State, Program Counter, and CP of that same process. The entries are
described in section Process Information.

Notice that this is a snapshot of what the entries are exactly when the crash dump is starting to be generated.
Therefore they are most likely different (and more telling) than the entries for the same processes found in the
=proc section. If thereis no currently running process, only the Current Process entry is shown.

Current Process Limited Stack Trace

This entry is shown only if there is a current process. It is similar to =proc_stack, except that only the function
frames are shown (that is, the stack variables are omitted). Also, only the top and bottom part of the stack are

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 21

1.5 How to Interpret the Erlang Crash Dumps

shown. If the stack is small (< 512 dlots), the entire stack is shown. Otherwise the entry skipping ## slots is
shown, where ## is replaced by the number of dlots that has been skipped.

Run Queue
Shows statistics about how many processes and ports of different priorities are scheduled on this scheduler.
** crashed **

This entry is normally not shown. It signifies that getting the rest of the information about this scheduler failed
for some reason.

1.5.3 Memory Information

Under the tag =memory is shown information similar to what can be obtained on a living node with
erl ang: menmory() .

1.5.4 Internal Table Information

Under the tags =hash_table:<table hame> and =index_table:<table name> is shown internal tables. These are
mostly of interest for runtime system developers.

1.5.5 Allocated Areas

Under the tag =allocated_areas is shown information similar to what can be obtained on a living node with
erl ang: system.info(allocated _areas).

1.5.6 Allocator

Under the tag =allocator :<A> is shown various information about allocator <A>. The information is similar to what
can be obtained on aliving node with er | ang: system i nf o({al | ocat or, <A>}). For moreinformation,
seedsoerts_alloc(3).

1.5.7 Process Information

The Erlang crashdump contains a listing of each living Erlang process in the system. The following fields can exist
for aprocess:

=proc:<pid>
Heading. States the processidentifier.
State
The state of the process. This can be one of the following:

Scheduled
The process was scheduled to run but is currently not running ("in the run queue").
Waiting
The process was waiting for something (inr ecei ve).
Running
The process was currently running. If the BIF er | ang: hal t / 1 was called, this was the process calling
it.
Exiting
The process was on its way to exit.
Garbing
Thisis bad luck, the process was garbage collecting when the crash dump was written. The rest of the
information for this processis limited.

22 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

Suspended
The processis suspended, either by the BIF er | ang: suspend_pr ocess/ 1 or because it triesto write
to a busy port.

Registered name
The registered name of the process, if any.
Spawned as

The entry point of the process, that is, what function was referenced in the spawn or spawn_| i nk call that
started the process.

Last scheduled in for | Current call

The current function of the process. These fields do not always exist.
Spawned by

The parent of the process, that is, the process that executed spawn or spawn_| i nk.
Started

The date and time when the process was started.
M essage queue length

The number of messages in the process message queue.
Number of heap fragments

The number of allocated heap fragments.
Heap fragment data

Size of fragmented heap data, in words. This is data either created by messages sent to the process or by the
Erlang BIFs. This amount depends on so many things that thisfield is usually uninteresting.

Link list

Process | Ds of processes linked to this one. Can also contain ports. If process monitoring is used, thisfield also
tellsinwhich direction themonitoring isin effect. That is, alink "to" aprocesstellsyou that the "current” process
was monitoring the other, and alink "from" a process tells you that the other process was monitoring the current
one.

Reductions

The number of reductions consumed by the process.
Stack+heap

The size of the stack and heap, in words (they share memory segment).
OldHeap

The size of the "old heap", in words. The Erlang virtual machine uses generational garbage collection with two
generations. Thereis one heap for new dataitems and one for the data that has survived two garbage collections.
The assumption (which is almost always correct) is that data surviving two garbage collections can be "tenured”
to a heap more seldom garbage collected, as they will live for along period. Thisis ausual technique in virtual
machines. The sum of the heaps and stack together constitute most of the allocated memory of the process.

Heap unused, OldHeap unused
The amount of unused memory on each heap, in words. Thisinformation is usually useless.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 23

1.5 How to Interpret the Erlang Crash Dumps

Memory

The total memory used by this process, in bytes. Thisincludes call stack, heap, and internal structures. Same as
erl ang: process_i nfo(Pi d, menory).

Program counter

The current instruction pointer. Thisis only of interest for runtime system developers. The function into which
the program counter points is the current function of the process.

CP

The continuation pointer, that is, the return address for the current call. Usually useless for other than runtime
system developers. This can be followed by the function into which the CP points, which is the function calling
the current function.

Arity

The number of live argument registers. The argument registers if any are live will follow. These can contain the
arguments of the function if they are not yet moved to the stack.

Internal State
A more detailed internal representation of the state of this process.
See al'so section Process Data.

1.5.8 Port Information

This section lists the open ports, their owners, any linked processes, and the name of their driver or external process.

1.5.9 ETS Tables

This section contains information about all the ETS tablesin the system. The following fields are of interest for each
table:

=ets.<owner>
Heading. States the table owner (a process identifier).
Table
Theidentifier for the table. If thetableisananed_t abl e, thisisthe name.
Name
The table name, regardless of if itisanamed_t abl e or not.
Hash table, Buckets
If thetableisahash table, that is, if itisnot an or der ed_set .
Hash table, Chain Length

If thetableisahash table. Contains statistics about the table, such as the maximum, minimum, and average chain
length. Having amaximum much larger than the average, and a standard deviation much larger than the expected
standard deviation is a sign that the hashing of the terms behaves badly for some reason.

Ordered set (AVL tree), Elements

If thetableisan or der ed_set . (The number of elementsis the same as the number of objects in the table.)
Fixed

If thetableisfixedusing et s: saf e_fi xt abl e/ 2 or some internal mechanism.

24 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

Objects
The number of objectsin thetable.
Words
The number of words allocated to datain the table.
Type
Thetabletype, that is, set , bag, dubl i cat e_bag, or or der ed_set .
Compr essed
If the table was compressed.
Protection

The protection of the table.
Write Concurrency

Ifwrite_concurrency wasenabled for thetable.
Read Concurrency

If read_concurrency was enabled for the table.

1.5.10 Timers

This section contains information about al the timers started with the BIFs er| ang: start _tiner/3 and
erl ang: send_aft er/ 3. Thefollowing fields exist for each timer:

=timer:<owner >

Heading. States the timer owner (a process identifier), that is, the process to receive the message when the timer
expires.

M essage
The message to be sent.
Time left

Number of milliseconds left until the message would have been sent.

1.5.11 Distribution Information

If the Erlang node was alive, that is, set up for communicating with other nodes, this section lists the connections that
were active. The following fields can exist:

=node:<node_name>

The node name.
no_distribution

If the node was not distributed.
=visible node:<channel>

Heading for avisible node, that is, an alive node with a connection to the node that crashed. States the channel
number for the node.

=hidden_node:<channel>

Heading for a hidden node. A hidden node is the same as a visible node, except that it is started with the " -
hi dden" flag. States the channel number for the node.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 25

1.5 How to Interpret the Erlang Crash Dumps

=not_connected:<channel>

Heading for anode that was connected to the crashed node earlier. References (that is, process or port identifiers)
to the not connected node existed at the time of the crash. States the channel number for the node.

Name

The name of the remote node.
Controller

The port controlling communication with the remote node.
Creation

An integer (1-3) that together with the node name identifies a specific instance of the node.
Remote monitoring: <local_proc> <remote_proc>

Thelocal process was monitoring the remote process at the time of the crash.
Remotely monitored by: <local_proc> <remote proc>

The remote process was monitoring the local process at the time of the crash.
Remotelink: <local_proc> <remote_proc>

A link existed between the local process and the remote process at the time of the crash.

1.5.12 Loaded Module Information

This section contains information about all loaded modules.
First, the memory use by the loaded code is summarized:
Current code
Code that is the current latest version of the modules.
Old code
Code where there exists a newer version in the system, but the old version is not yet purged.
Then, all loaded modules are listed. The following fields exist:
=mod:<module_name>
Heading. States the module name.
Current size
Memory use for the loaded code, in bytes.
Old size
Memory use for the old code, in bytes.
Current attributes
Module attributes for the current code. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Old attributes
Module attributes for the old code, if any. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Current compilation info

Compilation information (options) for the current code. Thisfield is decoded when looked at by the Crashdump
Viewer tool.

26 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

Old compilation info

Compilation information (options) for the old code, if any. Thisfield isdecoded when |ooked at by the Crashdump
Viewer tool.

1.5.13 Fun Information
This section lists al funs. The following fields exist for each fun:
=fun
Heading.
Module
The name of the module where the fun was defined.
Uniq, Index
Identifiers.
Address
The address of the fun's code.
Refc

The number of referencesto the fun.

1.5.14 Process Data

For each processthereisat least one=proc_stack and one=proc_heap tag, followed by the raw memory information
for the stack and heap of the process.

For each process there is also a =proc_messages tag if the process message queue is non-empty, and a
=proc_dictionary tag if the process dictionary (the put / 2 and get / 1 thing) is non-empty.

The raw memory information can be decoded by the Crashdump Viewer tool. Y ou can then see the stack dump, the
message queue (if any), and the dictionary (if any).

The stack dump is a dump of the Erlang process stack. Most of the live data (that is, variables currently in use) are
placed on the stack; thus this can be interesting. One hasto "guess' what is what, but as the information is symbolic,
thorough reading of thisinformation can be useful. Asan example, we can find the state variabl e of the Erlang primitive
loader online (5) and (6) in thefollowing example:

(1) 3cac44 Return addr 0x13BF58 (<terminate process normally>)

(2) y(0) ["/view/siri r1l@ dev/clearcase/otp/erts/lib/kernel/ebin",

(3) "/view/siri rl0 dev/clearcase/otp/erts/lib/stdlib/ebin"]

(4) y(1) <0.1.0>

(5) y(2) {state, [],none,#Fun<erl prim loader.6.7085890>,undefined,#Fun<erl prim loader.7.9000327>,
(6) #Fun<erl prim loader.8.116480692>,#Port<0.2>,infinity,#Fun<erl prim loader.9.10708760>}
(7) y(3) infinity

When interpreting the data for a process, it is helpful to know that anonymous function objects (funs) are given the
following:

* A name constructed from the name of the function in which they are created
e A number (starting with 0) indicating the number of that fun within that function

1.5.15 Atoms

This section presents al the atoms in the system. Thisis only of interest if one suspects that dynamic generation of
atoms can be a problem, otherwise this section can be ignored.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 27

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

Notice that the last created atom is shown first.

1.5.16 Disclaimer

The format of the crash dump evolves between OTP rel eases. Some information described here may not apply to your
version. A description like thiswill never be complete; it is meant as an explanation of the crash dump in general and
as ahelp when trying to find application errors, not as a compl ete specification.

1.6 How to Implement an Alternative Carrier for the Erlang
Distribution

This section describes how to implement an alternative carrier protocol for the Erlang distribution. The distribution is
normally carried by TCP/IP. Here is explained a method for replacing TCP/IP with another protocol.

The sectionisastep-by-step explanation of theuds_di st exampleapplication (inthe Kernel applicationexanpl es
directory). Theuds_di st application implements distribution over Unix domain sockets and is written for the Sun
Solaris 2 operating environment. The mechanisms are however general and apply to any operating system Erlang runs
on. The reason the C code is nhot made portable, is simply readability.

1.6.1 Introduction

To implement anew carrier for the Erlang distribution, the main steps are as follows.

As of ERTS version 10.0 support for distribution controller processes has been introduced. That is, the traffic
over a distribution channel can be managed by a process instead of only by a port. This makes it possible to
implement large parts of the logic in Erlang code, and you perhaps do not even need a new driver for the protocol.
One example could be Erlang distribution over UDP using gen_udp (your Erlang code will of course have to
take care of retransmissions, etc in this example). That is, depending on what you want to do you perhaps do not
need to implement a driver at all and can then skip the driver related sections below. Thegen_t cp_di st and
er| _uds_di st examples described in the Distribution Module section utilize distribution controller processes
and can be worth having alook at if you want to use distribution controller processes.

Writing an Erlang Driver

First, the protocol must be available to the Erlang machine, which involves writing an Erlang driver. A port program
cannot be used, an Erlang driver is required. Erlang drivers can be:

e Statically linked to the emulator, which can be an alternative when using the open source distribution of Erlang, or

* Dynamically loaded into the Erlang machines address space, which isthe only alternativeif aprecompiled version
of Erlang is to be used

Writing an Erlang driver is not easy. The driver is written as some callback functions called by the Erlang emulator
when datais sent to the driver, or the driver has any data available on afile descriptor. Asthe driver callback routines
execute in the main thread of the Erlang machine, the callback functions can perform no blocking activity whatsoever.
The callbacks are only to set up file descriptors for waiting and/or read/write available data. All 1/0 must be non-
blocking. Driver callbacks are however executed in sequence, why a global state can safely be updated within the
routines.

Writing an Erlang Interface for the Driver

When the driver is implemented, one would preferably write an Erlang interface for the driver to be able to test the
functionality of the driver separately. This interface can then be used by the distribution module, which will cover the
details of the protocol from thenet _ker nel .

28 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

The easiest pathisto mimicthei net andi net _t cp interfaces, but not much functionality in those modules needs
to be implemented. In the example application, only afew of the usual interfaces are implemented, and they are much
simplified.

Writing a Distribution Module

When the protocol is available to Erlang through a driver and an Erlang interface module, a distribution module can
be written. The distribution module is a module with well-defined callbacks, much likeagen_ser ver (thereisno
compiler support for checking the callbacks, though). This module implements:

» Thedetails of finding other nodes (that is, talking to eprd or something similar)
» Creating alisten port (or similar)

« Connecting to other nodes

» Performing the handshakes/cookie verification

Thereis however autility module, di st _ut i | , which does most of the hard work of handling handshakes, cookies,
timers, and ticking. Using di st _ut i | makes implementing a distribution module much easier and that is done in
the exampl e application.

Creating Boot Scripts

Thelast step isto create boot scripts to make the protocol implementation available at boot time. The implementation
can be debugged by starting the distribution when all the system is running, but in areal system the distribution isto
start very early, why a boot script and some command-line parameters are necessary.

This step also impliesthat the Erlang codein the interface and distribution modulesiswritten in such away that it can
be run in the startup phase. In particular, there can be no callsto the appl i cat i on module or to any modules not
loaded at boot time. That is, only Ker nel , STDLI B, and the application itself can be used.

1.6.2 Distribution Module

The distribution module expose an API that net _ker nel call in order to manage connections to other nodes. The
module name should have the suffix _di st .

The module needs to create some kind of listening entity (process or port) and an acceptor process that accepts
incoming connections using thelistening entity. For each connection, themodul e at | east needsto create one connection
supervisor process, which also is responsible for the handshake when setting up the connection, and a distribution
controller (process or port) responsible for transport of data over the connection. The distribution controller and the
connection supervisor process should be linked together so both of them are cleaned up when the connection is taken
down.

Note that there need to be exactly one distribution controller per connection. A process or port can only be distribution
controller for one connection. The registration as distribution controller cannot be undone. It will stick until the
distribution controller terminates. The distribution controller should not ignore exit signals. It is allowed to trap exits,
but it should then voluntarily terminate when an exit signal is received.

An exampleimplementation of adistribution modulecan befoundin $ERL T OP/lib/ker nel/examples/gen_tcp_dist/
src/gen_tcp_dist.erl. Itimplementsthedistribution over TCP/IPusingthegen_t cp API with distribution controllers
implemented by processes. Thisinstead of using port distribution controllers as the ordinary TCP/IP distribution uses.

Another example implementation of a distribution module can be found in $ERL_TOPI/lib/ker nel/examples/
erl_uds dist/src/erl_uds dist.erl. It implements the distribution over Unix domain socketsusing thegen_t cp API
with distribution controllers implemented by processes. Compared to the original uds_di st example using a port
driver writtenin C, er | _uds_di st iswritten entirely in Erlang.

Exported Callback Functions

The following functions are mandatory:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 29

href
href
href
href

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

listen(Nane) ->

{ok, {Listen, Address, Creation}} | {error, Error}
i sten(Nane, Host) ->

{ok, {Listen, Address, Creation}} | {error, Error}

l'isten/2 is caled once in order to listen for incoming connection requests. The call is made when the
distribution is brought up. The argument Nan® is the part of the node name before the @sign in the full node
name. It can be either an atom or a string. The argument Host isthe part of the node name after the @sign in
the full node name. It is always a string.

The return value consists of aLi st en handle (which is later passed to the accept / 1 callback), Addr ess
whichisa#net _addr ess{} recordwithinformation about the addressfor the node (the#net _addr ess{}
recordisdefinedinker nel /i ncl ude/ net _addr ess. hrl),andCr eat i on which (currently) isaninteger
1,2,0r3.

If epnd isto be used for node discovery, you typically want to usetheer | _epnd module (part of theker nel
application) in order to register the listen port with epnd and retrieve Cr eat i on to use.

address() ->
Addr ess

addr ess/ 0 iscalled in order to get the Addr ess part of the | i st en/ 2 function without creating a listen
socket. All fields except addr ess haveto be set in the returned record

Example:

address() ->
{ok, Host} = inet:gethostname(),
#net address{ host = Host, protocol = tcp, family = inet6 }.

accept (Listen) ->
AcceptorPi d

accept/ 1 should spawn a process that accepts connections. This process should preferably execute on max
priority. The process identifier of this process should be returned.

TheLi st en argument will bethesameastheLi st en handle part of thereturnvalueof thel i st en/ 1 callback
above. accept / 1 iscalled only once when the distribution protocol is started.

The caller of this function is a representative for net _ker nel (thismay or may not be the process registered
asnet kernel) andisin this document identified as Ker nel . When a connection has been accepted by the
acceptor process, it needs to inform Ker nel about the accepted connection. Thisis done by passing a message
on the form:

Kernel ! {accept, AcceptorPid, DistController, Family, Proto}

Di st Control | er iseither the process or port identifier of the distribution controller for the connection. The
distribution controller should be created by the acceptor processes when a new connection is accepted. Its job
isto dispatch traffic on the connection.

Ker nel responds with one of the following messages:
{Kernel, controller, SupervisorPid}

The request was accepted and Super vi sor Pi d is the process identifier of the connection supervisor
process (which is created intheaccept _connect i on/ 5 callback).

{Kernel, unsupported_protocol}
The request was rejected. Thisis afatal error. The acceptor process should terminate.

When an accept sequence has been completed the acceptor process is expected to continue accepting further
requests.

30 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

accept _connection(AcceptorPid, DistCrl, M/Node, Allowed, SetupTine) ->
Connect i onSuper vi sor Pi d

accept _connecti on/ 5 should spawn a process that will perform the Erlang distribution handshake for the
connection. If the handshake successfully completes it should continue to function as a connection supervisor.
This process should preferably execute on max priority.

The arguments:
Accept or Pi d

Process identifier of the process created by theaccept / 1 callback.
DistCrl

Theidentifier of the distribution controller identifier created by the acceptor process. To be passed along to
di st _util:handshake_ ot her_started(HsData) .

My/Node
Node name of this node. To be passed aong to
di st _util:handshake_ ot her_started(HsData) .

Al'l owed

Tobepassedaongtodi st _util: handshake ot her _started(HsData).
Set upTi ne

Time used for creating asetup timer by acall todi st _util:start_tinmer(SetupTi ne).Thetimer
should be passed alongtodi st _uti | : handshake_ot her _started(HsDat a) .

The created process should provide callbacks and other information needed for the handshakeina#hs_dat a{ }
recordand call di st _uti | : handshake_ot her _st art ed(HsDat a) with thisrecord.

di st _util:handshake_ot her_started(HsDat a) will perform the handshake and if the handshake
successfully completes this process will then continue in a connection supervisor loop as long as the connection
isup.

set up(Node, Type, MyNode, LongOr Short Nanes, SetupTine) ->
Connect i onSuper vi sor Pi d

set up/ 5 should spawn a process that connects to Node. When connection has been established it should
perform the Erlang distribution handshake for the connection. If the handshake successfully completesit should
continue to function as a connection supervisor. This process should preferably execute on max priority.

The arguments:
Node

Node name of remote node. Tobepassedalongtodi st _uti | : handshake_we_st art ed(HsDat a) .
Type

Connection type. To be passed dlongtodi st _uti | : handshake _we started(HsDat a).
MyNode

Node name of thisnode. To be passed alongtodi st _uti | : handshake we st arted(HsDat a) .
LongOr Shor t Nanes

Either the atom | ongnanes or the atom shor t names indicating whether long or short namesis used.
Set upTi ne

Time used for creating asetup timer by acall todi st _util:start_tinmer(SetupTi ne).Thetimer
should be passed alongtodi st _util: handshake we started(HsData).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 31

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

The caller of this function is a representative for net _ker nel (thismay or may not be the process registered
asnet _ker nel) andisin this document identified as Ker nel .

This function should, besides spawning the connection supervisor, also create a distribution controller. The
distribution controller is either a process or a port which is responsible for dispatching traffic.

The created process should provide callbacks and other information needed for the handshakeina#hs_dat a{ }
recordand call di st _uti | : handshake_we_st art ed(HsDat a) with thisrecord.

di st _util:handshake we_ started(HsData) will perform the handshake and the handshake
successfully completes this process will then continue in a connection supervisor loop as long as the connection
isup.

cl ose(Listen) ->
voi d()

Called in order to close the Li st en handlethat originally was passed fromthel i st en/ 1 callback.

sel ect (NodeNane) ->
bool ean()

Returnt r ue if the host name part of the NodeNare isvalid for use with this protocol; otherwise, f al se.
There are also two optional functions that may be exported:

setopts(Listen, Opts) ->
ok | {error, Error}

The argument Li st en isthe handle originally passed from thel i st en/ 1 callback. The argument Opt s isa
list of options to set on future connections.

getopts(Listen, Opts) ->
{ok, OptionValues} | {error, Error}

The argument Li st en isthe handle originally passed from thel i st en/ 1 callback. The argument Opt s isa
list of optionsto read for future connections.

The #hs _data{} Record

The dist _util:handshake we started/1 and dist _util:handshake other started/1
functions takes a#hs_dat a{ } record as argument. There are quite a lot of fields in this record that you need to
set. Therecord isdefinedinker nel /i ncl ude/ di st _uti |l . hrl . Not documented fields should not be s¢t, i.e.,
should be left asundef i ned.

Thefollowing #hs_dat a{} record fields need to be set unless otherwise stated:
kernel _pid

Process identifier of the Kernel process. That is, the process that caled either setup/5 or
accept _connection/5.

ot her _node

Name of the other node. This field is only mandatory when this node initiates the connection. That is, when
connectionis set up viaset up/ 5.

thi s_node
The node name of this node.
socket
Theidentifier of the distribution controller.

32 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

timer
Thetimer createdusingdi st _util:start_timer/ 1.
al | owed

Information passed as Al | owed toaccept _connecti on/ 5. Thisfield is only mandatory when the remote
node initiated the connection. That is, when the connection is set up viaaccept _connecti on/ 5.

f _send
A fun with the following signature:

fun (DistCtrlr, Data) -> ok | {error, Error}

where Di st Ct r | r istheidentifier of the distribution controller and Dat a isio datato pass to the other side.
Only used during handshake phase.
f_recv

A fun with the following signature:
fun (DistCtrlr, Length) -> {ok, Packet} | {error, Reason}

where Di st Ct r | r istheidentifier of the distribution controller. If Lengt h is0, al available bytes should be
returned. If Lengt h > 0, exactly Lengt h bytes should be returned, or an error; possibly discarding less than
Lengt h bytes of data when the connection is closed from the other side. It is used for passive receive of data
from the other end.

Only used during handshake phase.
f _setopts_pre_nodeup

A fun with the following signature:

fun (DistCtrlr) -> ok | {error, Error}

where Di st Ctr | r istheidentifier of the distribution controller. Called just before the distribution channel is
taken up for normal traffic.

Only used during handshake phase.
f _set opts_post_nodeup
A fun with the following signature:

fun (DistCtrlr) -> ok | {error, Error}

whereDi st Ct r | r istheidentifier of the distribution controller. Called just after distribution channel has been
taken up for normal traffic.

Only used during handshake phase.
f _getll
A fun with the following signature:

fun (DistCtrlr) -> ID

where Di st Ctr | r istheidentifier of the distribution controller and | Dis the identifier of the low level entity
that handles the connection (often Di st Ct r | r itself).

Only used during handshake phase.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 33

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

f _address

A fun with the following signature:
fun (DistCtrlr, Node) -> NetAddress

where Di st Ct r | r is the identifier of the distribution controller, Node is the node name of the node on
the other end, and Net Addr ess isa#net _addr ess{} record with information about the address for the

Node on the other end of the connection. The #net _addr ess{} record isdefined in ker nel /i ncl ude/
net address. hrl.

Only used during handshake phase.
nf_tick

A fun with the following signature:

fun (DistCtrlr) -> void()
whereDi st Ctr | r istheidentifier of the distribution controller. Thisfunction should send information over the

connection that is not interpreted by the other end while increasing the statistics of received packets on the other
end. Thisis usually implemented by sending an empty packet.

It is of vital importance that this operation does not block the caller for along time. This since it is called
from the connection supervisor.

Used when connection is up.
nf get st at

A fun with the following signature:
fun (DistCtrlr) -> {ok, Received, Sent, PendSend}

whereDi st Ct r | r istheidentifier of the distribution controller, Recei ved isreceived packets, Sent issent
packets, and PendSend isamount of datain queue to be sent (typically in bytes, but di st _ut i | only checks

whether the value is non-zero to know there is data in queue) or a bool ean() indicating whether there are
packetsin queue to be sent.

It is of vital importance that this operation does not block the caller for along time. This since it is called
from the connection supervisor.

Used when connection is up.
request _type

Therequest Ty pe aspassedto set up/ 5. Thisis only mandatory when the connection has been initiated by this
node. That is, the connectionis set up viaset up/ 5.

nf _setopts

A fun with the following signature:

fun (DistCtrl, Opts) -> ok | {error, Error}

34 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

where Di st Ct r | r is the identifier of the distribution controller and Opt s is a list of options to set on the
connection.

Thisfunction is optional. Used when connection is up.
nf _getopts
A fun with the following signature:

fun (DistCtrl, Opts) -> {ok, OptionValues} | {error, Error}

where Di st Ct r | r isthe identifier of the distribution controller and Opt s is alist of options to read for the
connection.

Thisfunction is optional. Used when connection is up.
f _handshake_conpl ete
A fun with the following signature:

fun (DistCtrlr, Node, DHandle) -> void()

whereDi st Ct r | r istheidentifier of the distribution controller, Node is the node name of the node connected
at the other end, and DHandl e is a distribution handle needed by a distribution controller process when calling
the following BIFs:

e erlang:dist_ctrl_get data/l

e erlang:dist_ctrl_get_data_notification/1
e erlang:dist_ctrl_input_handler/2

e erlang:dist_ctrl_put_datal/2

This function is called when the handshake has completed and the distribution channel is up. The distribution
controller can begin dispatching traffic over the channel. Thisfunction is optional.

Only used during handshake phase.
add_f 1 ags
Distribution flags to add to the connection. Currently all (non obsolete) flags will automatically be enabled.
Thisflag field is optional.
reject _flags
Distribution flags to reject. Currently the following distribution flags can be rejected:

DFLAG DI ST_HDR ATOM CACHE
Do not use atom cache over this connection.
DFLAG FRAGVENTS
Split large distribution messages into multiple fragments.

Thisflag field is optional .
See also Distribution Data Delivery
require_flags

Require these distribution flags to be used. The connection will be aborted during the handshake if the other end
does not use them.

Thisflag field is optional.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 35

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

Distribution Data Delivery

When using the default configuration, the data to pass over a connection needs to be delivered asisto the node on the
receiving end in the exact same order, with no loss of datawhat so ever, as sent from the sending node.

The data delivery order can be relaxed by disabling features that require strict ordering. This is done by passing
the distribution flags returned by di st _util :strict_order flags/0Ointhereject flags field of the
#hs_dat a{} record used when setting up the connection. When relaxed ordering is used, only the order of signals
with the same sender/receiver pair has to be preserved. However, note that disabling the features that require strict
ordering may have a negative impact on performance, throughput, and/or latency.

Enable Your Distribution Module

For net _ker nel to find out which distribution moduleto use, theer | command-line argument - pr ot o_di st is
used. It isfollowed by one or more distribution module names, with suffix "_dist" removed. That is,gen_t cp_di st
as adistribution module is specified as- pr ot o_di st gen_t cp.

If noepnd (TCP port mapper daemon) is used, also command-line option - no_epnd isto be specified, which makes
Erlang skip the epnd startup, both as an OS process and as an Erlang ditto.

1.6.3 The Driver

This section was written along time ago. Most of it is still valid, but some things have changed since then. Some
updates have been made to the documentation of the driver presented here, but more can be done and is planned
for the future. The reader isencouraged to read theer | _dri ver anddri ver _ent ry documentation aso.

Although Erlang driversin general can be beyond the scope of this section, a brief introduction seemsto be in place.

Drivers in General

An Erlang driver is a native code module written in C (or assembler), which serves as an interface for some special
operating system service. Thisis a general mechanism that is used throughout the Erlang emulator for all kinds of 1/
O. An Erlang driver can be dynamically linked (or loaded) to the Erlang emulator at runtime by usingtheer | _ddl |
Erlang module. Some of the driversin OTP are however statically linked to the runtime system, but that is more an
optimization than a necessity.

Thedriver datatypesand the functions availableto the driver writer are defined in header fileer | _dri ver . h seated
in Erlang'sinclude directory. Seethe erl_driver documentation for details of which functions are available.

When writing adriver to make a communications protocol available to Erlang, one should know just about everything
worth knowing about that particular protocol. All operation must be non-blocking and all possible situations are to be
accounted for in the driver. A non-stable driver will affect and/or crash the whole Erlang runtime system.

The emulator calls the driver in the following situations:

* Whenthedriverisloaded. This callback must have a special name and inform the emulator of what callbacks are
to be used by returning a pointer to aEr | Dr VEnt r y struct, which isto be properly filled in (see below).

* When aport to the driver is opened (by aopen_port call from Erlang). Thisroutineisto set up interna data
structures and return an opaque data entity of thetype Er | Dr vDat a, which isadatatype large enough to hold a
pointer. The pointer returned by thisfunction isthe first argument to al other callbacks concerning this particular
port. Itisusually called the port handle. The emulator only storesthe handle and does never try to interpret it, why
it can be virtually anything (anything not larger than a pointer that is) and can point to anything if it is a pointer.
Usually this pointer refers to a structure holding information about the particular port, asit does in the example.

« When an Erlang process sends data to the port. The data arrives as a buffer of bytes, the interpretation is not
defined, but is up to the implementor. This callback returns nothing to the caller, answers are sent to the caller

36 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

as messages (using aroutine called dr i ver _out put availableto all drivers). Thereisaso away totak ina
synchronous way to drivers, described below. There can be an additional callback function for handling data that
isfragmented (sent in adeep io-list). That interface gets the datain aform suitable for Unix wr i t ev rather than
in asingle buffer. Thereis no need for adistribution driver to implement such a callback, so we will not.

When a file descriptor is signaled for input. This callback is called when the emulator detects input on a file
descriptor that the driver has marked for monitoring by using the interface dr i ver _sel ect . The mechanism
of driver select makes it possible to read non-blocking from file descriptors by calling dri ver _sel ect when
reading is needed, and then do the reading in this callback (when reading is possible). The typical scenario is
that dri ver _sel ect iscaled when an Erlang process orders a read operation, and that this routine sends the
answer when datais available on the file descriptor.

When afile descriptor is signaled for output. This callback is called in a similar way as the previous, but when
writing to a file descriptor is possible. The usual scenario is that Erlang orders writing on a file descriptor and
that the driver callsdr i ver _sel ect . When the descriptor is ready for output, this callback is called and the
driver can try to send the output. Queuing can be involved in such operations, and there are convenient queue
routines available to the driver writer to use.

When aport is closed, either by an Erlang process or by the driver calling one of thedri ver _fai |l ure_ XXX
routines. This routine is to clean up everything connected to one particular port. When other callbacks call a
driver _fail ur e_XXXroutine, thisroutine isimmediately called. The callback routine issuing the error can
make no more use of the data structures for the port, as this routine surely has freed all associated data and closed
all file descriptors. If the queue utility available to driver writer is used, this routine is however not called until
the queue is empty.

When an Erlang process callser | ang: port _cont r ol / 3, which is a synchronous interface to drivers. The
control interface is used to set driver options, change states of ports, and so on. This interface is used alot in
the example.

When a timer expires. The driver can set timers with the function dri ver _set _ti nmer. When such timers
expire, a specific callback function is called. No timers are used in the example.

When the whole driver is unloaded. Every resource allocated by the driver isto be freed.

The Data Structures of the Distribution Driver

The driver used for Erlang distribution is to implement areliable, order maintaining, variable length packet-oriented
protocol. All error correction, resending and such need to be implemented in the driver or by the underlying
communications protocol. If the protocol is stream-oriented (as is the case with both TCP/IP and our streamed Unix
domain sockets), some mechanism for packaging is needed. We will use the simple method of having a header of four
bytes containing the length of the package in a big-endian 32-bit integer. As Unix domain sockets only can be used
between processes on the same machine, we do not need to code the integer in some specia endianess, but we will
do it anyway because in most situation you need to do it. Unix domain sockets are reliable and order maintaining, so
we do not need to implement resends and such in the driver.

We start writing the example Unix domain socketsdriver by declaring prototypesandfillinginastaticEr | Dr vEnt ry
structure:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 37

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

1) #include
2) #include
3) #include
4) #include
5) #include
#include
7) #include
8) #include

(
(
(
(
(
(6)
(
(
(
(

<stdio.h>
<stdlib.h>
<string.h>
<unistd.h>
<errno.h>
<sys/types.h>
<sys/stat.h>
<sys/socket.h>

9) #include <sys/un.h>
10) #include <fcntl.h>
(11) #define HAVE UIO H
(12) #include "erl driver.h"
(13) /*
(14) ** Interface routines
(15) */
(16) static ErlDrvData uds start(ErlDrvPort port, char *buff);
(17) static void uds_stop(ErlDrvData handle);
(18) static void uds command(ErlDrvData handle, char *buff, int bufflen);
(19) static void uds_input(ErlDrvData handle, ErlDrvEvent event);
(20) static void uds output(ErlDrvData handle, ErlDrvEvent event);
(21) static void uds finish(void);
(22) static int uds control(ErlDrvData handle, unsigned int command,
(23) char* buf, int count, char** res, int res size);
(24) /* The driver entry */
(25) static ErlDrvEntry uds driver entry = {
(26) NULL, /* init, N/A */
(27) uds_start, /* start, called when port is opened */
(28) uds_stop, /* stop, called when port is closed */
(29) uds_command, /* output, called when erlang has sent */
(30) uds_input, /* ready input, called when input
(31) descriptor ready */
(32) uds_output, /* ready output, called when output
(33) descriptor ready */
(34) "uds drv", /* char *driver name, the argument
(35) to open port */
(36) uds_finish, /* finish, called when unloaded */
(37) NULL, /* void * that is not used (BC) */
(38) uds_control, /* control, port control callback */
(39) NULL, /* timeout, called on timeouts */
(40) NULL, /* outputv, vector output interface */
(41) NULL, /* ready async callback */
(42) NULL, /* flush callback */
(43) NULL, /* call callback */
(44) NULL, /* event callback */
(45) ERL DRV _EXTENDED MARKER, /* Extended driver interface marker */
(46) ERL_DRV_EXTENDED MAJOR VERSION, /* Major version number */
(47) ERL DRV_EXTENDED MINOR VERSION, /* Minor version number */
(48) ERL DRV _FLAG SOFT BUSY, /* Driver flags. Soft busy flag is
(49) required for distribution drivers */
(50) NULL, /* Reserved for internal use */
(51) NULL, /* process exit callback */
(52) NULL /* stop_select callback */
(53) };

On line 1-10 the OS headers needed for the driver areincluded. Asthisdriver iswritten for Solaris, we know that the
header ui 0. h exists. Sothe preprocessor variable HAVE_UlI O _Hcan bedefined beforeer | _dri ver . hisincluded
on line 12. The definition of HAVE_UlI O_H will make the 1/0 vectors used in Erlang's driver queues to correspond
to the operating systems ditto, which is very convenient.

On line 16-23 the different callback functions are declared ("forward declarations).

38 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

The driver structure is similar for statically linked-in drivers and dynamically loaded. However, some of the fields
are to be left empty (that is, initialized to NULL) in the different types of drivers. The first field (thei ni t function
pointer) is always left blank in a dynamically loaded driver, see line 26. NULL on line 37 is always to be there, the
field isno longer used and is retained for backward compatibility. No timers are used in this driver, why no callback
for timersis needed. The out put v field (line 40) can be used to implement an interface similar to Unix wri t ev
for output. The Erlang runtime system could previously not use out put v for the distribution, but it can as from
ERTS5.7.2. Asthisdriver waswritten before ERTS 5.7.2 it does not usethe out put v callback. Using theout put v
callback is preferred, asit reduces copying of data. (We will however use scatter/gather 1/O internally in the driver.)

As from ERTS 5.5.3 the driver interface was extended with version control and the possibility to pass capability
information. Capability flags are present on line 48. As from ERTS 5.7.4 flag ERL_DRV_FLAG_SOFT_BUSY is
required for drivers that are to be used by the distribution. The soft busy flag implies that the driver can handle calls
to the out put and out put v calbacks athough it has marked itself as busy. This has always been a requirement
on drivers used by the distribution, but no capability information has been available about this previously. For more
information. seeer| _dri ver:set _busy_port()).

Thisdriver waswritten before the runtime system had SMP support. Thedriver will still functionin the runtime system
with SMP support, but performance will suffer from lock contention on the driver lock used for the driver. Thiscan be
alleviated by reviewing and perhaps rewriting the code so that each instance of the driver safely can executein parallel.
When instances safely can executein parallél, it is safe to enable instance-specific locking on the driver. Thisis done
by passing ERL_DRV_FLAG USE_PORT_LOCKI NGasadriver flag. Thisisleft as an exercise for the reader.

Thus, the defined callbacks are as follows:
uds_start
Must initiate data for a port. We do not create any sockets here, only initialize data structures.
uds_stop
Called when aport is closed.
uds_comand

Handles messages from Erlang. The messages can either be plain data to be sent or more subtle instructions to
the driver. Thisfunction is here mostly for data pumping.

uds_i nput

Called when there is something to read from a socket.
uds_out put

Called when it is possible to write to a socket.
uds_finish

Caled when the driver is unloaded. A distribution driver will never be unloaded, but we include this for
completeness. To be able to clean up after oneself is always a good thing.

uds_control
Theer| ang: port _control / 3 calback, which is used alot in this implementation.

The portsimplemented by this driver operate in two major modes, named command and dat a. In comrand mode,
only passive reading and writing (like gen_t cp: r ecv/gen_t cp: send) can be done. The port is in this mode
during the distribution handshake. When the connection is up, the port is switched to dat a mode and al data is
immediately read and passed further to the Erlang emulator. In dat a mode, no data arriving to uds_conmand is
interpreted, only packaged and sent out on the socket. Theuds_cont r ol callback doesthe switching between those
two modes.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 39

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

While net _ker nel informs different subsystems that the connection is coming up, the port is to accept data to
send. However, the port should not receive any data, to avoid that data arrives from another node before every kernel
subsystem is prepared to handleit. A third mode, named i nt er medi at e, isused for thisintermediate stage.

An enum is defined for the different types of ports:

1) typedef enum {

(

(2) portTypeUnknown, /* An uninitialized port */

(3) portTypelListener, /* A listening port/socket */

(4) portTypeAcceptor, /* An intermediate stage when accepting
(5) on a listen port */

(6) portTypeConnector, /* An intermediate stage when connecting */
(7) portTypeCommand, /* A connected open port in command mode */
(8) portTypeIntermediate, /* A connected open port in special

(9) half active mode */

(10) portTypeData /* A connected open port in data mode */

(11) } PortType;

The different types are as follows:
por t TypeUnknown

The type a port has when it is opened, but not bound to any file descriptor.
port Typeli st ener

A port that is connected to a listen socket. This port does not do much, no data pumping is done on this socket,
but read datais available when one is trying to do an accept on the port.

port TypeAccept or

This port is to represent the result of an accept operation. It is created when one wants to accept from a listen
socket, and it is converted to apor t Ty peComrand when the accept succeeds.

port TypeConnect or

Very similar to port TypeAccept or, an intermediate stage between the request for a connect operation and
that the socket is connected to an accepting ditto in the other end. When the sockets are connected, the port
switches typeto por t TypeCommand.

port TypeConmand

A connected socket (or accepted socket) in command mode mentioned earlier.
port Typel nt er medi at e

The intermediate stage for a connected socket. There isto be no processing of input for this socket.
port TypeDat a

The mode where data is pumped through the port and the uds_conmmand routine regards every call as a call
where sending iswanted. In thismode, all input availableisread and sent to Erlang when it arrives on the socket,
much like in the active mode of agen_t cp socket.

We study the state that is needed for the ports. Notice that not all fields are used for all types of ports. Some space
could be saved by using unions, but that would clutter the code with multiple indirections, so here is used one struct
for all types of ports, for readability:

40 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(1) typedef unsigned char Byte;
(2) typedef unsigned int Word;

(3) typedef struct uds data {

(4) int fd; /* File descriptor */

(5) ErlDrvPort port; /* The port identifier */

(6) int lockfd; /* The file descriptor for a lock file in
(7) case of listen sockets */

(8) Byte creation; /* The creation serial derived from the
(9) lock file */

(10) PortType type; /* Type of port */

(11) char *name; /* Short name of socket for unlink */

(12) Word sent; /* Bytes sent */

(13) Word received; /* Bytes received */

(14) struct uds data *partner; /* The partner in an accept/listen pair */
(15) struct uds data *next; /* Next structure in list */

(16) /* The input buffer and its data */

(17) int buffer size; /* The allocated size of the input buffer */
(18) int buffer pos; /* Current position in input buffer */
(19) int header pos; /* Where the current header is in the

(20) input buffer */

(21) Byte *buffer; /* The actual input buffer */

(22) } UdsData;

This structure is used for all types of ports although some fields are useless for some types. The least memory
consuming solution would be to arrange this structure as a union of structures. However, the multiple indirections in
the code to access afield in such a structure would clutter the code too much for an example.

Thefieldsin the structure are as follows:
fd

The file descriptor of the socket associated with the port.
port

The port identifier for the port that this structure correspondsto. It is needed for most dr i ver _ XXX calls from
the driver back to the emulator.

| ockfd
If the socket is alisten socket, we use a separate (regular) file for two purposes:
* Wewant alocking mechanism that gives no race conditions, to be sure if another Erlang node uses the listen
socket name we require or if the fileis only left there from a previous (crashed) session.

e Westorethecr eat i on seria number in the file. The cr eat i on isanumber that is to change between
different instances of different Erlang emulators with the same name, so that process identifiers from one
emulator do not become valid when sent to a new emulator with the same distribution name. The creation
can be from 0 through 3 (two bits) and is stored in every process identifier sent to another node.

In a system with TCP-based distribution, this data is kept in the Erlang port mapper daemon (epnd),
which is contacted when a distributed node starts. The lock file and a convention for the UDS listen socket's
name remove the need for epnd when using this distribution module. UDS is always restricted to one host,
why avoiding a port mapper is easy.
creation
The creation number for alisten socket, which is calculated as (the value found in the lock-file + 1) rem 4. This

creation value is also written back into the lock file, so that the next invocation of the emulator finds our value
inthefile.

type
The current type/state of the port, which can be one of the values declared above.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 41

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

name

The name of the socket file (the path prefix removed), which alows for deletion (unl i nk) when the socket is
closed.

sent

How many bytesthat have been sent over the socket. This can wrap, but that is no problem for the distribution, as
the Erlang distribution is only interested in if this value has changed. (The Erlang net _ker nel ti cker uses
thisvalue by calling the driver to fetch it, which is done through theer | ang: port _cont r ol / 3 routine.)

recei ved
How many bytes that are read (received) from the socket, used in similar waysassent .
part ner

A pointer to another port structure, which is either the listen port from which this port is accepting a connection
or conversely. The "partner relation” is always bidirectional.

next

Pointer to next structure in a linked list of all port structures. This list is used when accepting connections and
when the driver is unloaded.

buf f er _si ze, buf f er _pos, header _pos, buffer

Data for input buffering. For details about the input buffering, see the source code in directory ker nel /
exanpl es. That certainly goes beyond the scope of this section.

Selected Parts of the Distribution Driver Implementation

The implemenation of the distribution driver is not completely covered here, details about buffering and other things
unrelated to driver writing are not explained. Likewise are some peculiarities of the UDS protocol not explained in
detail. The chosen protocol is not important.

Prototypes for the driver callback routines can be found intheer | _dri ver. h header file.

The driver initidization routine is (usually) declared with a macro to make the driver easier to port between different
operating systems (and flavors of systems). This is the only routine that must have a well-defined name. All other
callbacks are reached through the driver structure. The macro to use is named DRI VER | NI T and takes the driver
name as parameter:

(1) /* Beginning of linked list of ports */
(2) static UdsData *first data;

(3) DRIVER INIT(uds drv)

(4) {

(5) first data = NULL;

(6) return &uds driver entry;
(7) }

The routine initializes the single global data structure and returns a pointer to the driver entry. The routine is called
whener| _ddl | : 1 oad_dri ver iscalled from Erlang.

Theuds_st art routineis called when a port is opened from Erlang. In this case, we only allocate a structure and
initialize it. Creating the actual socket isleft to theuds_comrand routine.

42 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(1) static ErlDrvData uds start(ErlDrvPort port, char *buff)
(2){

(3) UdsData *ud;

(4)

(5) ud = ALLOC(sizeof(UdsData));
(6) ud->fd = -1;

(7) ud->lockfd = -1;

(8) ud->creation = 0;

(9) ud->port = port;

(10) ud->type = portTypeUnknown;
(11) ud->name = NULL;

(12) ud->buffer size = 0;

(13) ud->buffer pos = 0;

(14) ud->header pos = 0;

(15) ud->buffer = NULL;

(16) ud->sent = 0;

(17) ud->received = 0;

(18) ud->partner = NULL;

(19) ud->next = first data;

(20) first data = ud;

(21)

(22) return((ErlDrvData) ud);
(23) }

Every data item is initialized, so that no problems arise when a newly created port is closed (without there being
any corresponding socket). Thisroutineis called when open_port ({spawn, "uds_drv"},[]) iscaledfrom
Erlang.

Theuds_comrand routine is the routine called when an Erlang process sends data to the port. This routine handles
all asynchronous commands when the port isin command mode and the sending of all datawhen the portisin dat a
mode:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 43

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(1) static void uds_command(ErlDrvData handle, char *buff, int bufflen)

(2){

(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypeData || ud->type == portTypelntermediate) {
(5) DEBUGF (("Passive do _send %d",bufflen));

(6) do send(ud, buff + 1, bufflen - 1); /* XXX */
(7) return;

(8) }

(9) if (bufflen == 0) {

(10) return;

(11) }

(12) switch (*buff) {

(13) case 'L':

(14) if (ud->type !'= portTypeUnknown) {

(15) driver failure posix(ud->port, ENOTSUP);
(16) return;

(17) }

(18) uds_command_listen(ud,buff,bufflen);

(19) return;

(20) case 'A':

(21) if (ud->type !'= portTypeUnknown) {

(22) driver failure posix(ud->port, ENOTSUP);
(23) return;

(24) }

(25) uds_command_accept(ud,buff,bufflen);

(26) return;

(27) case 'C':

(28) if (ud->type !'= portTypeUnknown) {

(29) driver failure posix(ud->port, ENOTSUP);
(30) return;

(31) }

(32) uds_command_connect (ud,buff,bufflen);

(33) return;

(34) case 'S':

(35) if (ud->type != portTypeCommand) {

(36) driver failure posix(ud->port, ENOTSUP);
(37) return;

(38))

(39) do_send(ud, buff + 1, bufflen - 1);

(40) return;

(41) case 'R':

(42) if (ud->type !'= portTypeCommand) {

(43) driver failure posix(ud->port, ENOTSUP);
(44) return;

(45))

(46) do recv(ud);

(47) return;

(48) default:

(49) return;

(50) }

(51) }

The command routine takes three parameters; the handle returned for the port by uds_st ar t , which isapointer to
the internal port structure, the data buffer, and the length of the data buffer. The buffer is the data sent from Erlang
(alist of bytes) converted to an C array (of bytes).

If Erlang sends, for example, the list [$a, $b, $c] to the port, the buf f | en variable is 3 and the buf f variable
contains{'a','b',"'c'} (noNULL termination). Usualy the first byte is used as an opcode, which isthe case in
this driver too (at least when the port isin command mode). The opcodes are defined as follows:

'L' <socket nane>
Creates and listens on socket with the specified name.

44 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

"A' <listen nunber as 32-bit big-endi an>

Accepts from the listen socket identified by the specified identification number. The identification number is
retrieved with theuds_cont r ol routine.

' C <socket name>
Connects to the socket named <socket name>.
'S <dat a>

Sends the data <data> on the connected/accepted socket (in conmmand mode). The sending is acknowledged
when the data has | eft this process.

) RI
Receives one packet of data.

"One packet of data" in command ' R can be explained as follows. This driver always sends data packaged with a
4 byte header containing a big-endian 32-bit integer that represents the length of the data in the packet. There is no
need for different packet sizes or some kind of streamed mode, as this driver is for the distribution only. Why is the
header word coded explicitly in big-endian when a UDS socket is local to the host? It is good practice when writing
adistribution driver, as distribution in practice usually crosses the host boundaries.

On line 4-8 is handled the case where the port isin dat a modeor i nt er nedi at e mode and the remaining routine
handles the different commands. The routine usesthedri ver _fai |l ure_posi x() routine to report errors (see,
for example, line 15). Notice that the failure routines make a call to the uds_ st op routine, which will remove the
internal port data. The handle (and the casted handle ud) is therefore invalid pointers after adri ver _fail ure
call and we should return immediately. The runtime system will send exit signalsto al linked processes.

The uds_i nput routine is caled when data is available on a file descriptor previousy passed to the
driver_sel ect routine. This occurs typically when a read command is issued and no data is available. The
do_recv routineisasfollows:

1) static void do recv(UdsData *ud)

(

(2) A4

(3) int res;

(4) char *ibuf;

(5) for(;;) {

(6) if ((res = buffered read package(ud,&ibuf)) < 0) {

(7) if (res == NORMAL READ FAILURE) {

(8) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ, 1);
(9) } else {

(10) driver failure eof(ud->port);

(11) }

(12) return;

(13) }

(14) /* Got a package */

(15) if (ud->type == portTypeCommand) {

(16) ibuf[-1] = 'R'; /* There is always room for a single byte
(17) opcode before the actual buffer

(18) (where the packet header was) */

(19) driver output(ud->port,ibuf - 1, res + 1);

(20) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ,O0);
(21) return;

(22) } else {

(23) ibuf[-1] = DIST MAGIC RECV TAG; /* XXX */

(24) driver output(ud->port,ibuf - 1, res + 1);

(25) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ,1);
(26) }

(27) }

(28) }

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 45

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

The routine tries to read data until a packet is read or the buf f er ed_r ead_package routine returns a
NORMAL_READ FAI LURE (an internally defined constant for the module, which means that the read operation
resulted in an EAWOULDBL OCK). If the port isin command mode, the reading stops when one package is read. If the
port isin dat a mode, the reading continues until the socket buffer is empty (read failure). If no more data can be
read and moreiswanted (which is always the case when the socket isin dat a mode), dri ver _sel ect iscalledto
make theuds_i nput calback be called when more datais available for reading.

When the port isin dat a mode, all datais sent to Erlang in aformat that suits the distribution. In fact, the raw data
will never reach any Erlang process, but will be translated/interpreted by the emulator itself and then delivered in the
correct format to the correct processes. In the current emulator version, received data is to be tagged with a single
byte of 100. That iswhat the macro DI ST_MAG C_RECV_TAGis defined to. The tagging of data in the distribution
can be changed in the future.

Theuds_i nput routine handles other input events (like non-blocking accept), but most importantly handle data
arriving at the socket by callingdo_r ecv:

(1) static void uds input(ErlDrvData handle, ErlDrvEvent event)

(2){

(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypelListener) {

(5) UdsData *ad = ud->partner;

(6) struct sockaddr un peer;

(7) int pl = sizeof(struct sockaddr un);

(8) int fd;

(9) if ((fd = accept(ud->fd, (struct sockaddr *) &peer, &pl)) < 0) {
(10) if (errno '= EWOULDBLOCK) {

(11) driver failure posix(ud->port, errno);
(12) return;

(13) }

(14) return;

(15) }

(16) SET _NONBLOCKING(fd);

(17) ad->fd = fd;

(18) ad->partner = NULL;

(19) ad->type = portTypeCommand;

(20) ud->partner = NULL;

(21) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);
(22) driver output(ad->port, "Aok",3);

(23) return;

(24) }

(25) do_recv(ud);

(26) }

The important lineis the last line in the function: the do_r ead routineis called to handle new input. The remaining
function handles input on a listen socket, which means that it is to be possible to do an accept on the socket, which
isalso recognized as aread event.

The output mechanisms are similar to the input. Thedo_send routineis as follows:

46 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(1) static void do_send(UdsData *ud, char *buff, int bufflen)
(2){

(3) char header[4];

(4) int written;

(5) SysIOVec iov[2];

(6) ErlIOVec eio;

(7) ErlDrvBinary *binv[] = {NULL,NULL};

(8) put _packet length(header, bufflen);

(9) iov[0].iov_base = (char *) header;

(10) iov[0].iov_len = 4;

(11) iov[1l].iov_base = buff;

(12) iov[1l].iov_len = bufflen;

(13) eio.iov = iov;

(14) eio.binv = binv;

(15) eio.vsize = 2;

(16) eio.size = bufflen + 4;

(17) written = 0;

(18) if (driver sizeq(ud->port) == 0) {

(19) if ((written = writev(ud->fd, iov, 2)) == eio.size) {
(20) ud->sent += written;

(21) if (ud->type == portTypeCommand) {
(22) driver output(ud->port, "Sok", 3);
(23))

(24) return;

(25) } else if (written < 0) {

(26) if (errno != EWOULDBLOCK) {

(27) driver failure eof(ud->port);
(28) return;

(29) } else {

(30) written = 0;

(31))

(32) } else {

(33) ud->sent += written;

(34) h

(35) /* Enqueue remaining */

(36) ¥

(37) driver_enqv(ud->port, &eio, written);

(38) send _out queue(ud);

(39) }

This driver uses the wr i t ev system call to send data onto the socket. A combination of wri t ev and the driver
output queuesisvery convenient. AnEr | | OVec structurecontainsaSys| OVec (whichisequivalenttothest r uct

i ovec structuredefinedinui 0. h. TheEr | | Ovec also containsan array of Er | Dr vBi nar y pointers, of the same
length asthe number of buffersinthe /O vector itself. One can usethisto allocate the binariesfor the queue "manually"
in the driver, but here the binary array is filled with NULL values (line 7). The runtime system then allocates its own
bufferswhendri ver _enqv iscaled (line 37).

Theroutinebuildsan I/O vector containing the header bytes and the buffer (the opcode has been removed and the buffer
length decreased by the output routine). If the queue is empty, we write the data directly to the socket (or at least try
to). If any dataisleft, it is stored in the queue and then we try to send the queue (line 38). An acknowledgement is sent
when the messageisdelivered completely (line22). Thesend_out _queue sends acknowledgementsif the sending
is completed there. If the port isin command mode, the Erlang code serializes the send operations so that only one
packet can be waiting for delivery at atime. Therefore the acknowledgement can be sent whenever the queueis empty.

Thesend_out _queue routineisasfollows:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 47

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(1) static int send out queue(UdsData *ud)

(2) {

(3) for(;;) {

(4) int vlen;

(5) SysIOVec *tmp = driver peekq(ud->port, &vlen);
(6) int wrote;

(7) if (tmp == NULL) {

(8) driver select(ud->port, (ErlDrvEvent) ud->fd, DO WRITE, 0);
(9) if (ud->type == portTypeCommand) {

(10) driver output(ud->port, "Sok", 3);
(11))

(12) return 0;

(13) b

(14) if (vlen > IO VECTOR MAX) {

(15) vlen = I0 VECTOR MAX;

(16) b

(17) if ((wrote = writev(ud->fd, tmp, vlen)) < 0) {
(18) if (errno == EWOULDBLOCK) {

(19) driver select(ud->port, (ErlDrvEvent) ud->fd,
(20) DO WRITE, 1);

(21) return 0;

(22) } else {

(23) driver failure eof(ud->port);

(24) return -1;

(25))

(26) h

(27) driver deq(ud->port, wrote);

(28) ud->sent += wrote;

(29) }

(30) }

We simply pick out an 1/0 vector from the queue (which is the whole queue asa Sy s| Ovec). If the I/O vector istoo
long (I O_VECTOR_MAX is defined to 16), the vector length is decreased (line 15), otherwisethewr i t ev cal (line
17) fails. Writing is tried and anything written is dequeued (line 27). If the write fails with EAOULDBLOCK (notice
that all sockets are in non-blocking mode), dri ver _sel ect iscalled to maketheuds_out put routine be called
when there is space to write again.

We continue trying to write until the queue is empty or the writing blocks.
The routine aboveis called from theuds_out put routine:

(1) static void uds output(ErlDrvData handle, ErlDrvEvent event)
(2){

(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypeConnector) {

(5) ud->type = portTypeCommand;

(6) driver select(ud->port, (ErlDrvEvent) ud->fd, DO WRITE, 0);
(7) driver output(ud->port, "Cok",3);

(8) return;

(9) }

(10) send out queue(ud);

(11) }

Theroutineissimple: it first handles the fact that the output select will concern a socket in the business of connecting
(and the connecting blocked). If the socket isin a connected state, it simply sends the output queue. This routine is
called when it is possible to write to a socket where we have an output queue, so there is no question what to do.

The driver implements a control interface, which is a synchronous interface caled when Erlang calls
erl ang: port_control /3. Only thisinterface can control the driver when it isin dat a mode. It can be called
with the following opcodes:

48 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

'R

Sets port in command mode.

Setsportini nt er nedi at e mode.

Setsport in dat a mode.

Getsidentification number for listen port. Thisidentification number is used in an accept command to the driver.
It isreturned as a big-endian 32-bit integer, which isthe file identifier for the listen socket.

Gets statistics, whichisthe number of bytesreceived, the number of bytes sent, and the number of bytespendingin
the output queue. This datais used when the distribution checksthat a connection isalive (ticking). The statistics
isreturned as three 32-bit big-endian integers.

Sends a tick message, which is a packet of length 0. Ticking is done when the port is in dat a mode, so the
command for sending data cannot be used (besides it ignores zero length packages in conmand mode). Thisis
used by the ticker to send dummy data when no other traffic is present.

Note: It is important that the interface for sending ticks is not blocking. This implementation uses
erl ang: port_control /3, which does not block the caler. If erl ang: port_conmand is used, use
erl ang: port_comrand/ 3 andpass[f or ce] asoptionlist; otherwisethe caller can be blocked indefinitely
on abusy port and prevent the system from taking down a connection that is not functioning.

Gets creation number of alisten socket, which is used to dig out the number stored in the lock fileto differentiate
between invocations of Erlang nodes with the same name.

The control interface gets a buffer to return its value in, but is free to alocate its own buffer if the provided one is
too small. Theuds_cont r ol codeisasfollows:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 49

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

1) static int uds control(ErlDrvData handle, unsigned int command,
2) char* buf, int count, char** res, int res size)

3) {

4) /* Local macro to ensure large enough buffer. */

(
(
(
(
(
(6) do {
(
(
(
(

5) #define ENSURE(N) \
\

7) if (res size < N) { \

8) *res = ALLOC(N); \

9) } \

10) } while(0)
(11) UdsData *ud = (UdsData *) handle;
(12) switch (command) {
(13) case 'S':
(14) {
(15) ENSURE (13) ;
(16) **res = 0;
(17) put _packet length((*res) + 1, ud->received);
(18) put _packet length((*res) + 5, ud->sent);
(19) put_packet length((*res) + 9, driver sizeq(ud->port));
(20) return 13;
(21) }
(22) case 'C':
(23) if (ud->type < portTypeCommand) {
(24) return report _control error(res, res size, "einval");
(25) }
(26) ud->type = portTypeCommand;
(27) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ, 0);
(28) ENSURE (1) ;
(29) **res = 0;
(30) return 1;
(31) case 'I':
(32) if (ud->type < portTypeCommand) {
(33) return report _control error(res, res size, "einval");
(34) }
(35) ud->type = portTypelntermediate;
(36) driver select(ud->port, (ErlDrvEvent) ud->fd, DO _READ, 0);
(37) ENSURE (1) ;
(38) **res = 0;
(39) return 1;
(40) case 'D':
(41) if (ud->type < portTypeCommand) {
(42) return report _control error(res, res size, "einval");
(43) }
(44) ud->type = portTypeData;
(45) do recv(ud);
(46) ENSURE (1) ;
(47) **res = 0;
(48) return 1;
(49) case 'N':
(50) if (ud->type != portTypelListener) {
(51) return report _control error(res, res size, "einval");
(52) }
(53) ENSURE(5) ;
(54) (*res)[0] = 0;
(55) put packet length((*res) + 1, ud->fd);
(56) return 5;
(57) case 'T': /* tick */
(58) if (ud->type != portTypeData) {
(59) return report _control error(res, res size, "einval");
(60) ¥
(61) do send(ud,"",0);
(62) ENSURE (1) ;
(63) **res = 0;

50 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(64) return 1;

(65) case 'R':

(66) if (ud->type != portTypelListener) {

(67) return report _control error(res, res size, "einval");
(68) }

(69) ENSURE(2) ;

(70) (*res)[0] = 0;

(71) (*res)[1] = ud->creation;

(72) return 2;

(73) default:

(74) return report control error(res, res size, "einval");
(75) }

(76) #undef ENSURE

(77) }

The macro ENSURE (line 5-10) is used to ensure that the buffer is large enough for the answer. We switch on the
command and take actions. We always have read select activeon aport in dat a mode (achieved by calingdo_r ecv
on line 45), but we turn off read selectionini nt er medi at e and conmand modes (line 27 and 36).

Therest of the driver is more or less UDS-specific and not of general interest.

1.6.4 Putting It All Together

To test the distribution, the net _ker nel : st art/ 1 function can be used. It is useful, as it starts the distribution
on arunning system, where tracing/debugging can be performed. The net _kernel : start/ 1 routine takesalist
as its single argument. The list first element in the list is to be the node name (without the "@hostname™) as an
atom. The second (and last) element is to be one of the atoms shor t nanes or | ongnamnes. In the example case,
shor t nanes is preferred.

Fornet _ker nel tofind out which distribution moduleto use, command-lineargument - pr ot o_di st isused. Itis
followed by one or more distribution module names, with suffix *_dist" removed, that is, uds_di st asadistribution
moduleis specified as- prot o_di st uds.

If noepnd (TCP port mapper daemon) is used, also command-line option - no_epnd isto be specified, which makes
Erlang skip the epnd startup, both as an OS process and as an Erlang ditto.

The path to the directory where the distribution modules reside must be known at boot. This can be achieved either by
specifying - pa <pat h> on the command line or by building a boot script containing the applications used for your
distribution protocol. (Intheuds_di st protocol, only theuds_di st application needs to be added to the script.)

Thedistribution startsat boot if all the aboveisspecifiedandan- snane <nane> flagispresent at the command line.

Example 1:

$ erl -pa $ERL TOP/lib/kernel/examples/uds_dist/ebin -proto dist uds -no_epmd
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with "G)

1> net kernel:start([bing,shortnames]).
{ok,<0.30.0>}

(bing@hador)2>

Example 2:
$ erl -pa $ERL TOP/lib/kernel/examples/uds dist/ebin -proto dist uds \
-no_epmd -sname bong

Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)
(bong@hador) 1>

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 51

1.7 How to Implement an Alternative Node Discovery for Erlang Distribution

The ERL_FLAGS environment variable can be used to store the complicated parametersin:

$ ERL_FLAGS=-pa $ERL TOP/lib/kernel/examples/uds dist/ebin \
-proto _dist uds -no_epmd

$ export ERL_FLAGS

$ erl -sname bang

Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)
(bang@hador) 1>

ERL_ FLAGS should not include the node name.

1.7 How to Implement an Alternative Node Discovery for
Erlang Distribution

This section describes how to implement an alternative node discovery mechanism for Erlang distribution. Node
discovery isnormally done using DNS and the Erlang Port Mapper Daemon (EPMD) for port registration and |ookup.

‘ Support for alternative node discovery mechanisms was added in Erlang/OTP 21. ‘

1.7.1 Introduction

To implement your own node discovery module you have to write your own EPMD module. The
EPMD module is responsible for providing the location of another node. The distribution modules
(inet _tcp_dist/inet_tls_dist)calthe EPMD moduleto get the IP address and port of the other node. The
EPMD module that is part of Erlang/OTP will resolve the hostname using DNS and uses the EPMD unix process
to get the port of another node. The EPMD unix process does this by connecting to the other node on a well-known
port, port 4369.

1.7.2 Discovery module

The discovery module needs to implement the same APl as the regular EPMD module. However, instead of
communicating with EPMD you can connect to any service to find out connection details of other nodes. A discovery
moduleisenabled by setting -epmd_modul e when starting erlang. The discovery module must implement thefollowing
callbacks:

start_link/0

Start any processes needed by the discovery module.
names/1

Return node names held by the registrar for the given host.
register_node/2

Register the given node name with the registrar.
port_please/3

Return the distribution port used by the given node.

The discovery module may implement the following callback:
address please/3

Return the address of the given node. If not implemented, er | _epnd: addr ess_pl ease/ 3 will be used
instead.

This callback may also return the port of the given node. In that case port_please/3 may be omitted.

52 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 The Abstract Format

listen_port_please/2

Return the port the local node should listen to. If not implemented, er | _epnd: | i sten_port _pl ease/ 2
will be used instead.

1.8 The Abstract Format

This section describes the standard representation of parse trees for Erlang programs as Erlang terms. This
representation isknown asthe abstract for mat. Functions dealing with such parsetreesareconpi | e: fornms/ 1, 2
and functions in the following modules:

* epp(3)

e erl_eval (3)
e erl_lint(3)
e erl_parse(3)
« erl_pp(3)

« 10(3)

The functions are also used as input and output for parse transforms, see the conpi | e(3) module.

We use the function Rep to denote the mapping from an Erlang source construct Cto its abstract format representation
R, andwriteR = Rep(C) .

Theword ANNOIN this section represents an annotation, and denotes among other things the number of thelinein the
source file where the construction occurred. Seeer| _anno(3) for details. Several instances of ANNOin the same
construction can denote different annotations.

As operators are not terms in their own right, when operators are mentioned below, the representation of an operator
isto be taken to be the atom with a printname consisting of the same characters as the operator.

1.8.1 Module Declarations and Forms

A module declaration consists of a sequence of forms, which are either function declarations or attributes.

* If D is a module declaration consisting of the forms F_1, ..., F_k, then Rep(D) = [Rep(F_1),
Rep(F_k) 1.

« If F is an attribute -export([Fun_1/A 1, ce Fun_k/ A k]), then Rep(F) =
{attribute, ANNO export,[{Fun_1,A 1}, ..., {Fun_k, A k}1}.

e If F is an attribute -inport(Md,[Fun_1/A 1, R Fun_k/ A k]), then Rep(F) =
{attribute, ANNO i mport,{Md,[{Fun_1,A 1}, ..., {Fun_k, A k}1}}.

e If Fisan attribute - nodul e(Mod) , then Rep(F) ={ at t ri but e, ANNO nodul e, Mbd}.

e |IfFisanattribute-file(File, Line),thenRep(F)={attribute, ANNO, file,{File,Line}}.

« If Fisafunction declaration Nane Fc_1 ; ... ; Name Fc_k, where each Fc_i is a function
clause with a pattern sequence of the same length Ari t y, then Rep(F) = {f unct i on, ANNG, Nane, Arity,
[Rep(Fc_1), ...,Rep(Fc_k)]}.

e If Fisafunction specification- Spec Narme Ft_1; ...; Ft_k, where Spec iseither the atom spec or
theatom cal | back, and each Ft _i isapossibly constrained function type with an argument sequence of the
samelength Ari ty, then Rep(F) ={ attri but e, ANNG, Spec, {{Nane, Arity},[Rep(Ft_1), ...,
Rep(Ft _k)]1}}.

 If F is a function specification - spec Md: Name Ft_1; ...; Ft_k, whereeach Ft i isa
possibly constrained function type with an argument sequence of the same length Arity, then Rep(F) =
{attribute, ANNO spec, {{Md, Nane, Arity},[Rep(Ft_1), ..., Rep(Ft_k)]}}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 53

1.8 The Abstract Format

e If Fisarecord declaration - r ecord(Nane, {V_1, ..., V_k}),whereeachV_i isarecord field, then
Rep(F) ={attribute, ANNO record, { Name, [Rep(V_1), ..., Rep(V_k)]}}.For Rep(V), see
below.

e |If Fisatypedeclaration- Type Nanme(V_1, ..., V_k) :: T,whereType iseither theatomt ype or
the atom opaque, each V_i isatype variable, and T is atype, then Rep(F) = {at t ri but e, ANNQ, Type,
{Name, Rep(T),[Rep(V_1), ..., Rep(V_k)]}}.

* If Fisawildattribute- A(T) ,then Rep(F) ={attri but e, ANNO, A, T}.

Record Fields

Each field in arecord declaration can have an optional, explicit, default initializer expression, and an optional type.
« IfVisAthenRep(V)={record_fiel d, ANNO Rep(A)}.

e IfVisA = E,whereEisanexpression, then Rep(V) ={record_fi el d, ANNO Rep(A), Rep(E)}.

e If V is A e T, where T is a type then Rep(V) = {typed_record field,
{record_field, ANNO Rep(A)}, Rep(T)}.

e IfVisA = E :: T,whereEisanexpressionand T isatype, then Rep(V) ={typed_record_field,
{record_field, ANNO, Rep(A), Rep(E)}, Rep(T)}.

Representation of Parse Errors and End-of-File

In addition to the representations of forms, the list that represents a module declaration (as returned by functionsin
epp(3) anderl _par se(3)) can contain the following:
* Tuples{error, E} and{war ni ng, W, denoting syntactically incorrect forms and warnings.

« {eof, LOCATI ON}, denoting an end-of-stream encountered before a complete form had been parsed. The word
LOCATI ON represents a location, and denotes the number of the last line, and possibly the number of the last
column on that ling, in the sourcefile. Seeer| _anno(3) for details.

Seethe form.info/Otypeinerl parse(3) for more details about these values.

1.8.2 Atomic Literals

There are five kinds of atomic literals, which are represented in the same way in patterns, expressions, and guards:

e IfLisanatomliteral, then Rep(L) ={ at om ANNO, L} .

» |If L isacharacter literal, then Rep(L) ={ char, ANNG, L}.

e IfLisafloat literal, then Rep(L) ={f | oat , ANNO, L}.

* If Lisaninteger literal, then Rep(L) ={i nt eger, ANNO, L}.

» IfLisasdtringlitera consisting of the charactersC 1, ..., C k,thenRep(L) ={string, ANNQ, [C 1, ...,
C K]}.

Notice that negative integer and float literals do not occur as such; they are parsed as an application of the unary
negation operator.

1.8.3 Patterns

If Psisasequenceof patternsP_1, ..., P_k,thenRep(Ps)=[Rep(P_1), ..., Rep(P_k)] .Suchsequences
occur asthe list of argumentsto afunction or fun.

Individual patterns are represented as follows:

e |If Pisanatomic literal L, then Rep(P) = Rep(L).

« If P is a bitstring pattern <<P_1: Si ze_1/ TSL_1, Ce P_k: Si ze_k/ TSL_k>>, where each
Si ze_i isan expression that can be evaluated to an integer, and each TSL_i is a type specificer list, then
Rep(P) = {bi n, ANNO, [{bi n_el enent, ANNO, Rep(P_1), Rep(Si ze_1), Rep(TSL_1)},

54 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 The Abstract Format

{bi n_el ement, ANNO, Rep(P_k), Rep(Si ze_k), Rep(TSL_k)}]}. For Rep(TSL), see below. An
omitted Si ze_i isrepresented by def aul t . Anomitted TSL_i isrepresented by def aul t .

If Pisacompound pattern P_1 = P_2, then Rep(P) ={ mat ch, ANNO, Rep(P_1), Rep(P_2)}.

If Pisaconspattern[P_h | P_t],then Rep(P) ={cons, ANNO Rep(P_h), Rep(P_t)}.

If Pisamap pattern#{ A 1, ..., A k},whereeachA i isanassociationP_i _1 : = P_i _2,then Rep(P)
={map, ANNO, [Rep(A_1), ..., Rep(A_K)]}.ForRep(A), seebelow.

If Pisanil pattern[] , then Rep(P) ={ ni | , ANNG} .

If Pisan operator patternP_1 Qp P_2, where Op isabinary operator (thisiseither an occurrence of ++ applied
to aliteral string or character list, or an occurrence of an expression that can be evaluated to a number at compile
time), then Rep(P) = { op, ANNO, Op, Rep(P_1), Rep(P_2)}.

If Pisan operator pattern Qo P_0, where Op isaunary operator (thisis an occurrence of an expression that can
be evaluated to a number at compile time), then Rep(P) = { op, ANNO, Op, Rep(P_0) }.

If Pisaparenthesized pattern (P_0), then Rep(P) = Rep(P_0) , that is, parenthesized patterns cannot be
distinguished from their bodies.

If P is a record field index pattern #Nane. Fi el d, where Fiel d is an atom, then Rep(P) =
{record_i ndex, ANNO Nane, Rep(Fi el d)}.

If P is a record patteen #Name{Field 1=P 1, C Fi el d_k=P_k},
where each Field_i is an atom or . then Rep(P) =
{record, ANNO, Nane, [{record_fiel d, ANNO Rep(Field_1), Rep(P_1)}, Ce

{record_field, ANNO Rep(Field k), Rp(P_k)}1}.

If Pis atuple pattern {P_1, ..., P_k}, then Rep(P) = {tupl e, ANNO [Rep(P_1), ...,

Rep(P_k)1}.

If Pisauniversal pattern _, then Rep(P) ={var, ANNO, ' _'}.

If Pisavariable pattern V, then Rep(P) = { var , ANNO, A}, where A is an atom with a printname consisting of
the same characters as V.

Notice that every pattern has the same source form as some expression, and is represented in the same way as the
corresponding expression.

1.8.4 Expressions

A body B is a non-empty sequence of expressionsE 1, ..., E k, and Rep(B) =[Rep(E_ 1), ...,
Rep(E _k)].

An expression E is one of the following:

If Eisan atomic litera L, then Rep(E) = Rep(L).

If Eisabitstring comprehension<<E 0 || Q.1, ..., Q_k>> whereeachQ i isaqudifier, then Rep(E)
={bc, ANNO, Rep(E 0),[Rep(Q 1), ..., Rep(Q.Kk)]}.ForRep(Q), seebelow.

If E is a bitstring constructor <<E 1:Size_ 1/TSL_1, Ce E k: Si ze_k/ TSL_k>>,
where each Size_i is an expresson and each TSL_i is a type specificer list, then
Rep(E) = { bi n, ANNQ, [{ bi n_el enment, ANNO, Rep(E_1), Rep(Si ze_1), Rep(TSL_1)}, ...,
{bi n_el ement, ANNO, Rep(E_k), Rep(Si ze_k), Rep(TSL_k) }]}. For Rep(TSL), see below. An
omitted Si ze_i isrepresented by def aul t . Anomitted TSL_i isrepresented by def aul t .

If Eisablock expression begi n B end, where Bisabody, then Rep(E) = { bl ock, ANNO, Rep(B) }.

If Eisacaseexpressioncase E 0 of Cc_1 ; ... ; Cc_k end,whereE_0 isan expression and each
Cc_i isacaseclause, thenRep(E) ={' case', ANNO, Rep(E_0),[Rep(Cc_1), ..., Rep(Cc_Kk)]}.

If Eisacatch expressioncat ch E_0,thenRep(E) ={"' cat ch' , ANNO, Rep(E_0)}.
If Eisaconsskeleton[E_h | E_t],thenRep(E) ={cons, ANNO Rep(E_h), Rep(E_t)}.
If Eisafunexpressionfun Name/ Arity,thenRep(E)={"'fun', ANNO, {function, Nane, Arity}}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 55

1.8 The Abstract Format

« If E is a fun expression fun Modul e: Name/ Arity, then Rep(E) = {'fun', ANNG
{function, Rep(Mdul e), Rep(Nane), Rep(Arity)}}.

e« IfEisafunexpressonfun Fc_1 ; ... ; Fc_k end,whereeachFc_i isafunction clause, then Rep(E)
={"fun', ANNG, {cl auses, [Rep(Fc_1), ..., Rep(Fc_k)]1}}.

» |IfEisafunexpressonfun Nane Fc_1; ... ; Name Fc_k end,whereNaneisavariableandeachFc_i
isafunction clause, then Rep(E) = { nanmed_f un, ANNO, Nare, [Rep(Fc_1), ..., Rep(Fc_k)]}.

« If E is a function call E O(E_1, E k), then Rep(E) = {call, ANNO, Rep(E_O0),
[Rep(E_ 1), ..., Rep(EK)]}.

« If E is a function cal E mE O(E_1, Ce, E k), then Rep(E) = {call, ANNO
{renote, ANNO, Rep(E_n), Rep(E_0)},[Rep(E_1), ..., Rep(E_Kk)]}.

e |IfEisanif expressonif lc_1 ; ... ; lc_k end,whereeachlc_i isanif clause then Rep(E) =
{"if',ANNO [Rep(lc_1), ..., Rep(lc_k)1}.

« |IfEisalistcomprehenson[E_ O || Q.1, ..., QXK],whereeachQ i isaqudifier, then Rep(E) =
{Ic, ANNO Rep(E 0),[Rep(Q.1), ..., Rep(QKk)]}.ForRep(Q), seebelow.

e |IfEisamapcreation#{A 1, ..., A k},whereeach A i isanassociationE i 1 => E_i_2, then
Rep(E) ={ map, ANNO, [Rep(A_1), ..., Rep(A_k)]}.For Rep(A), seebelow.

e |IfEisamapupdateE O#{A 1, ..., A k},whereeachA i isanassociaionE i 1 => E i _2or
Ei 1 := E.i_2,thenRep(E) ={nmap, ANNO, Rep(E_ 0),[Rep(A 1), ..., Rep(AK)]}.For
Rep(A), see below.

e If E is a match operator expression P = E 0, where P is a pattern, then Rep(E) =

{mat ch, ANNO, Rep(P), Rep(E_0) }.

e IfEisnil,[],thenRep(E) ={ni | , ANNG} .

e |f Eisan operator expressionE_ 1 Op E_2, where Op is abinary operator other than match operator =, then
Rep(E) ={ op, ANNO, Op, Rep(E_1), Rep(E_2)}.

« If E is an operator expression Op E 0, where Op is a unary operator, then Rep(E) =
{ op, ANNO, Op, Rep(E_0) }.

e |f Eisaparenthesized expression(E_0), then Rep(E) = Rep(E_0) , that is, parenthesized expressions cannot
be distinguished from their bodies.

« |IfEisareceiveexpressionreceive Cc_1 ; ... ; Cc_k end,whereeach Cc_i isacase clause, then
Rep(E) ={'receive' , ANNO [Rep(Cc_1), ..., Rep(Cc_k)]1}.

- |If Eisareceive expressionreceive Cc_1 ; ... ; Cc_k after EO -> Bt end, where
each Cc_i isacaseclause, E O is an expression, and B_t is a body, then Rep(E) ={' recei ve' , ANNO,
[Rep(Cc_1), ..., Rep(Cc_k)],Rep(E_0),Rep(B_t)}.

« If E is a record creation #Name{Field 1=E 1, Ce Fi el d_k=E Kk},
where each Field_i is an atom or , then Rep(E) =

{record, ANNO, Narne, [{record_fi el d, ANNO Rep(Field_1),Rep(E_1)}, Ce
{record_field, ANNO Rep(Field k), Rp(E_k)}]}.

« |If E is a record field access E _O#Nanme. Fi el d, where Field is an aom, then Rep(E)
{record_field, ANNO Rep(E_O), Nane, Rep(Field)}.

e« If E is a record fiedld index #Nane.Field, where Field is an aom, then Rep(E)
{record_i ndex, ANNO Nane, Rep(Fi el d)}.

o |If E is a record update E O#Name{Fiel d_1=E 1, Ca
Fi el d_k=E_k}, where each Field_i is an atom, then Rep(E)
{record, ANNO, Rep(E_0), Nane, [{record_field, ANNO Rep(Field_1), Rep(E_1)},
{record_field, ANNO Rep(Field_k), Rep(E_k)}]}.

e |If Eisatuple skeleton {E 1, ..., E k}, then Rep(E) = {tuple, ANNO [Rep(E_1), ...,
Rep(E_k)]1}.

56 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 The Abstract Format

 IfEisatryexpressiontry B catch Tc_1 ; ... ; Tc_k end,whereBisabody andeachTc_i isa
catch clause, then Rep(E) ={" try', ANNO, Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)1,[]1}.

« |IfEisatryexpressontry Bof Cc_1; ... ; Cc_k catch Tc_1; ... ; Tc_n end,whereBis
abody, each Cc_i isacaseclause, andeach Tc_j isacatch clause, thenRep(E) ={' try' , ANNO, Rep(B),
[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],[1}.

e |If Eis atry expresson try B after A end, where B and A are bodies, then Rep(E) =
{"try', ANNG Rep(B),[].[],Rep(A)}.

 |IfEisatryexpressontry B of Cc_1; ... ; Cc_k after A end,whereBandAareabodies, and
eachCc_i isacaseclause thenRep(E) ={'try', ANNO Rep(B),[Rep(Cc_1), ..., Rep(Cc_Kk)],
[].Rep(A)}.

e |IfEisatry expressontry B catch Tc_1 ; ... ; Tc_k after A end, whereBand A are

bodies, and each Tc_i isacatch clause, thenRep(E) ={ ' try' , ANNO Rep(B),[].,[Rep(Tc_1), ...,
Rep(Tc_k)], Rep(A) }.

 IfEisatry expressontry B of Cc_1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n
after A end, where B and A are a bodies, each Cc_i is acase clause, and each Tc_j is a catch clause,
then Rep(E) = {" try', ANNO, Rep(B), [Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ...,

Rep(Tc_n)], Rep(A)}.

e IfEisavariableV, then Rep(E) ={ var, ANNO, A}, where Ais an atom with a printname consisting of the same
charactersas V.

Qualifiers

A qualifier Q isone of the following:

* If Qisafilter E, where E is an expression, then Rep(Q) = Rep(E) .
e If Q is a generator P <- E, where P is a pattern and E is an expression, then Rep(Q) =
{generat e, ANNO, Rep(P), Rep(E) }.

e If Q is a bitstring generator P <= E, where P is a pattern and E is an expression, then Rep(Q) =
{b_gener at e, ANNO, Rep(P), Rep(E) }.
Bitstring Element Type Specifiers

A type specifier list TSL for abitstring element isasequence of type specifiersTS 1 - ... - TS k,andRep(TSL)
=[Rep(TS_1), ..., Rep(TS k)].

« |f TSisatype specifier A, where Ais an atom, then Rep(TS) = A.

e |If TSisatype specifier A: Val ue, where Aisan atom and Val ue isan integer, then Rep(TS) ={ A, Val ue}.
Associations

An association A is one of the following:

« |If AisanassociationK => V, then Rep(A) ={map_fi el d_assoc, ANNO, Rep(K), Rep(V)}.
e IfAisanassociationK : = V,thenRep(A) ={map_fi el d_exact, ANNO, Rep(K), Rep(V)}.

1.8.5 Clauses

There are function clauses, if clauses, case clauses, and catch clauses.
A clause C is one of the following:

* IfCisacaseclauseP - > B, wherePisapatternand Bisabody, then Rep(C) ={ cl ause, ANNO, [Rep(P)],
[].Rep(B)}.

e IfCisacaseclauseP when Gs -> B, whereP isapattern, Gs isaguard sequence, and B is a body, then
Rep(C) ={cl ause, ANNO, [Rep(P)], Rep(Gs), Rep(B) }.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 57

1.8 The Abstract Format

e |If Cisacach clause P -> B, where P is a pattern and B is a body, then Rep(C) = { cl ause, ANNG,
[Rep({throw, P, _})].,[], Rep(B)}, that is, acatch clause with an explicit exception classt hr ow and
with or without an explicit stacktrace variable _ cannot be distinguished from a catch clause without an explicit
exception class and without an explicit stacktrace variable.

e |IfCisacachclauseX : P -> B, where Xisan atomic literal or a variable pattern, P is a pattern, and B
isabody, then Rep(C) ={ cl ause, ANNO, [Rep({X, P, _})]1,[]1, Rep(B)},thatis, acatch clause with an
explicit exception class and with an explicit stacktrace variable _ cannot be distinguished from a catch clause with
an explicit exception class and without an explicit stacktrace variable.

e IfCisacachclauseX : P : S -> B,whereXisanatomic literal or avariable pattern, P isapattern, Sisa
variable, and B is a body, then Rep(C) ={ cl ause, ANNO, [Rep({X, P, S})].,[], Rep(B)}.

« |IfCisacachclause P when Gs -> B, whereP isapattern, Gs isaguard sequence, and B is a body, then
Rep(C) ={cl ause, ANNO, [Rep({throw, P, })], Rep(Gs), Rep(B)}, that is, acatch clause with an
explicit exception classt hr owand with or without an explicit stacktrace variable _ cannot be distinguished from
a catch clause without an explicit exception class and without an explicit stacktrace variable.

e« If Cisacachclause X : P when Gs -> B, where X is an atomic literal or a variable
pattern, P is a pattern, Gs is a guard sequence, and B is a body, then Rep(C) = {cl ause, ANNQ,
[Rep({X, P, _})],Rep(Gs), Rep(B)},thatis, acatch clause with an explicit exception class and with an
explicit stacktrace variable _ cannot be distinguished from a catch clause with an explicit exception class and
without an explicit stacktrace variable.

e IfCisacachclauseX : P : S when Gs -> B, where Xisan atomic literal or a variable pattern,
P is a pattern, Gs is a guard sequence, S is a variable, and B is a body, then Rep(C) = { cl ause, ANNO,
[Rep({X P, S})], Rep(Gs), Rep(B)}.

e |IfCisafunctionclause(Ps) -> B, where Ps is a pattern sequence and B is a body, then Rep(C) =
{cl ause, ANNO, Rep(Ps),[], Rep(B)}.

 IfCisafunctionclause(Ps) when Gs -> B, wherePs isapattern sequence, Gs isaguard sequence and
Bisabody, then Rep(C) = { cl ause, ANNO, Rep(Ps), Rep(Gs), Rep(B)}.

e [IfCisanifclauseGs -> B, whereGs isaguard sequence and B isabody, then Rep(C) = { cl ause, ANNG,
[1, Rep(Gs), Rep(B)}.

1.8.6 Guards

A guard sequence Gsisasequenceof guardsG 1; ...; G k,andRep(Gs)=[Rep(G 1), ..., Rep(GKk)].
If the guard sequenceis empty, then Rep(Gs) =[] .

A guard G is a non-empty sequence of guardtests @ _1, ..., G _k,and Rep(G) =[Rep(&_1), ...,
Rep(& _Kk)].

A guard test Gt is one of the following:

» If Gtisan atomic literal L, then Rep(Gt) = Rep(L).

e If Gt is a bitstring constructor <<@& _1: Size 1/TSL_1, R G _k:Size k/ TSL_k>>,
where each Size_i is a guad test and each TSL_i is a type specificer list, then
Rep(Gt) ={ bi n, ANNO, [{ bi n_el enent, ANNO, Rep(& _1), Rep(Si ze_1), Rep(TSL_1)},

{bi n_el ement, ANNO, Rep(G _K), Rep(Si ze_Kk), Rep(TSL_k)}]}. For Rep(TSL), see above. An
omitted Si ze_i isrepresented by def aul t . Anomitted TSL_i isrepresented by def aul t .
e |IfGtisaconsskeleton[& _h | G _t],then Rep(Gt) ={ cons, ANNO, Rep(&G _h), Rep(& _t)}.

e IfGtisafunctioncal A& _1, ..., G _k),whereAisanatom, then Rep(Gt) ={cal | , ANNO, Rep(A),
[Rep(G_1), ..., Rep(G_Kk)]1}.
 If Gtisafunctioncal A mMA(G _1, ..., G _k),where A mistheatomer| ang and Aisan atom or an

operator, then Rep(Gt) = {cal I , ANNO, {renot e, ANNO, Rep(A_ m, Rep(A) },[Rep(& _1), ...,
Rep(& _k)1}.

58 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 The Abstract Format

If Gtisamap creation#{ A 1, ..., A k},whereeachA i isanassociaionG i 1 => &G _i_2,then
Rep(Gt) ={ map, ANNO, [Rep(A_1), ..., Rep(A_k)]}.For Rep(A), see above.

If Gtisamapupdate& _O#{A 1, ..., A k},whereeachA i isanassociationG i 1 => & i 2
oo@ i 1 :=G&_i_2,thenRep(Gt)={map, ANNO, Rep(&G _0),[Rep(A 1), ..., Rep(AKk)]}.

For Rep(A), see above.

If Gtisnil, [], then Rep(Gt) ={ ni | , ANNG} .

If Gtisanoperator guardtest G 1 Op & _2, where Op isabinary operator other than match operator =, then
Rep(Gt) ={ op, ANNO, Op, Rep(& _1), Rep(G _2)}.

If Gt is an operator guard test Op & _0, where Op is a unary operator, then Rep(Gt) =
{op, ANNO, Op, Rep(& _0) }.

If Gtisaparenthesized guardtest (G _0), then Rep(Gt) = Rep(&G _0) , that is, parenthesized guard tests
cannot be distinguished from their bodies.

If Gt is a record creation #Nane{Field 1=G 1, Ce, Field k=G _k},
where each Field.i is an atom or _, then Rep(Gt) =
{record, ANNO, Nane, [{record_field, ANNO Rep(Field 1), Rep(G_1)}, ce

{record field, ANNO Rep(Field k), Rep(& _Kk)}1}.

If Gt is a record field access G _O#Name. Fi el d, where Fi el d is an atom, then Rep(Gt)
{record_field, ANNO Rep(& _0), Nane, Rep(Field)}.

If Gt is a record field index #Nane.Field, where Field is an aom, then Rep(Gt)
{record_i ndex, ANNO Nane, Rep(Fi el d)}.

If Gtisatupleskeleton {& _1, ..., G _k}, then Rep(Gt) = {tupl e, ANNO [Rep(& _1), ...,

Rep(& _k)1}.

If Gt isavariable pattern V, then Rep(Gt) = { var, ANNO, A}, where A is an atom with a printname consisting
of the same charactersas V.

Notice that every guard test has the same source form as some expression, and is represented in the same way as the
corresponding expression.

1.8.7 Types

If T is an annotated type A :: T_0, where A is a variable, then Rep(T) = {ann_t ype, ANNO,
[Rep(A), Rep(T_0)]}.

If T isan atom, a character, or aninteger literal L, then Rep(T) = Rep(L).

If T is a bitstring type <<_: M _: _*N>>, where M and N are singleton integer types, then Rep(T) =
{type, ANNQ, bi nary, [Rep(M, Rep(N)] }.

If Tisthe empty list type[], then Rep(T) = {type, ANNO, ni |, []}, that is, the empty list type[] cannot
be distinguished from the predefined typeni | () .

If Tisafuntypefun(),thenRep(T) ={type, ANNG, "' fun',[]}.

If T is a fun type fun((...) -> T 0), then Rep(T) = {type, ANNO 'fun',
[{type, ANNO any}, Rep(T_0)]}.

If Tisafuntypef un(Ft),whereFt isafunction type, then Rep(T) = Rep(Ft) . For Rep(Ft), see below.

If T is an integer range type L .. H, where L and H are singleton integer types, then Rep(T) =
{type, ANNQ, r ange, [Rep(L), Rep(H1}.

If Tisamaptypemap() ,then Rep(T) ={t ype, ANNO, map, any}.

If Tisamap type #{A 1, ..., Ak}, where each A i is an association type, then Rep(T) =
{type, ANNO, map, [Rep(A_1), ..., Rep(A_K)]}.ForRep(A), seebelow.

If TisanoperatortypeT_1 Op T_2,where Op isabinary operator (thisis an occurrence of an expression that
can be evaluated to an integer at compile time), then Rep(T) ={ op, ANNO, Op, Rep(T_1), Rep(T_2)}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 59

1.8 The Abstract Format

e If Tisanoperator typeOQp T_O, where Op isaunary operator (thisis an occurrence of an expression that can be
evaluated to an integer at compile time), then Rep(T) ={ op, ANNO, Op, Rep(T_0) }.
e IfTis(T_0) ,thenRep(T)=Rep(T_0),thatis, parenthesized types cannot be distinguished fromtheir bodies.

e If T is a predefined (or built-in) type N(T_1, T k), then Rep(T) = {type, ANNO, N,
[Rep(T_1), ..., Rep(T_Kk)]}.

« If Tisarecord type #Name{F_1, ..., F_k}, whereeach F_i is arecord field type, then Rep(T) =
{type, ANNQ, record, [Rep(Nane), Rep(F_1), ..., Rep(F_k)]}.ForRep(F), seebelow.

e IfTisaremotetypeM N(T_1, ..., T_k),thenRep(T)={renote_type, ANNO [Rep(M, Rep(N),
[Rep(T_1), ..., Rep(T_Kk)]1}.

« |If Tisatupletypet upl e(),then Rep(T) ={t ype, ANNG, t upl e, any}.

e IfTisatupletype{T 1, ..., T_k},thenRep(T) ={type, ANNO tuple,[Rep(T_1), ...,
Rep(T_k)]1}.

o IfTisatypeunionT_1 | ... | T_k, then Rep(T) = {type, ANNO, uni on, [Rep(T_1),
Rep(T_k)1}.

« |If TisatypevariableV, then Rep(T) ={ var, ANNO, A}, where A is an atom with a printname consisting of the
same characters as V. A type variable is any variable except underscore ().

e If T is a user-defined type N(T_1, T k), then Rep(T) = {user_type, ANNO, N,
[Rep(T_1), ..., Rep(T_Kk)]}.

Function Types

A function type Ft is one of the following:

« |IfFtisaconstrainedfunctiontypeFt _1 when Fc,whereFt 1 isafunctiontypeand Fc isafunction constraint,
then Rep(T) ={t ype, ANNO, bounded_fun, [Rep(Ft _1), Rep(Fc)]}. For Rep(Fc), see below.

e If tisafunctiontype (T 1, ..., T.n) -> T 0O, where each T i is a type, then Rep(Ft) =
{type, ANNO, " fun',[{type, ANNO, product, [Rep(T_1), ..., Rep(T_n)]},Rep(T_0)]}.

Function Constraints

A function constraint Fc is a non-empty sequence of constraints C 1, C k, and Rep(Fc) =

[Rep(C 1), ..., Rep(CK)].

« IfCisacongtraintV :: T,whereVisatypevariableand T isatype, then Rep(C) =
{type, ANNQO, constraint, [{atom ANNO, i s_subt ype}, [Rep(V), Rep(T)]1}.

Association Types

e If A is an association type K => V, where K and V are types, then Rep(A) =
{type, ANNO nap_field assoc, [Rep(K), Rep(V)]}.
« If A is an association type K 1= V, where K and V are types, then Rep(A) =

{type, ANNO nmap_fiel d_exact, [Rep(K), Rep(V)]}.

Record Field Types

 |IfFisarecordfieldtypeNane :: Type, where Type isatype, then Rep(F) =
{type, ANNO, fi el d_type, [Rep(Nane), Rep(Type)]}.

1.8.8 The Abstract Format after Preprocessing

The compilation option debug_i nf o can be specified to the compiler to have the abstract code stored in the
abstract _code chunk in the Beam file (for debugging purposes).

As from Erlang/OTP R9C, the abstract _code chunk contains { raw_abstract _v1, Abstract Code},
where Abst r act Code isthe abstract code as described in this section.

60 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 tty - A Command-Line Interface

In OTP releases before RIC, the abstract code after some more processing was stored in the Beam file. The first
element of the tuple would be either abst ract _v1 (in OTP R7B) or abst r act _v2 (in OTP R8B).

1.9 tty - A Command-Line Interface

tty isasimple command-line interface program where keystrokes are collected and interpreted. Completed lines
are sent to the shell for interpretation. A simple history mechanism saves previous lines, which can be edited before
sending them to the shell. t t y is started when Erlang is started with the following command:

erl

t t y operatesin one of two modes:

* Normal mode, in which text lines can be edited and sent to the shell.
» Shell break mode, which allows the user to kill the current shell, start multiple shells, and so on.

1.9.1 Normal Mode

In normal mode keystrokes from the user are collected and interpreted by tty. Most of the Emacs line-editing
commands are supported. The following is a complete list of the supported line-editing commands.

Typographic conventions:

e G a means pressing the Ctrl key and the letter a simultaneously.

e M meanspressing the Esc key and the letter f in sequence.

* Home and End represent the keys with the same name on the keyboard.
« Left andRi ght represent the corresponding arrow keys.

Key Sequence Function

Home Beginning of line
C-a Beginning of line
C-b Backward character
C-Left Backward word
M-b Backward word
Cd Delete character
M-d Delete word

End End of line

C-e End of line

CH Forward character
C-Right Forward word
M-f Forward word

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 61

1.10 How to Implement a Driver

C-g Enter shell break mode

Ck Kill line

C-u Backward kill line

C- Redraw line

C-n Fetch next line from the history buffer
C-p Fetch previous line from the history buffer
C-t Transpose characters

C-w Backward kill word

C-y Insert previoudly killed text

C-] Insert matching closing bracket

Table 9.1: tty Text Editing

1.9.2 Shell Break Mode

In this mode the following can be done:

« Kill or suspend the current shell
e Connect to a suspended shell
e Start anew shell

1.10 How to Implement a Driver

This section was written a long time ago. Most of it is still valid, as it explains important concepts, but this was
written for an older driver interface so the examples do not work anymore. The reader is encouraged to read the
erl _driver anddriver_entry documentation also.

1.10.1 Introduction

This section describes how to build your own driver for Erlang.

A driver in Erlang is alibrary written in C, which is linked to the Erlang emulator and called from Erlang. Drivers
can be used when C is more suitable than Erlang, to speed up things, or to provide access to OS resources not directly
accessible from Erlang.

A driver can be dynamically loaded, as a shared library (known as a DLL on Windows), or statically loaded, linked
with the emulator when it is compiled and linked. Only dynamically loaded drivers are described here, statically linked
drivers are beyond the scope of this section.

62 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 How to Implement a Driver

When adriver isloaded it is executed in the context of the emulator, shares the same memory and the same thread.
Thismeansthat al operationsin the driver must be non-blocking, and that any crash in the driver bringsthe whole
emulator down. In short, be careful.

1.10.2 Sample Driver

This section describes a simple driver for accessing a postgres database using the libpg C client library. Postgres is
used because it is free and open source. For information on postgres, see Www.postgr es.or g.

Thedriver is synchronous, it uses the synchronous calls of the client library. Thisis only for simplicity, but not good,
asit halts the emulator while waiting for the database. Thisisimproved below with an asynchronous sample driver.

The code is straightforward: all communication between Erlang and the driver isdonewithport _control / 3, and
the driver returns data back using ther buf .

An Erlang driver only exports one function: the driver entry function. Thisis defined with amacro, DRI VER | NI T,
which returns a pointer to aC st r uct containing the entry points that are called from the emulator. The st r uct

defines the entries that the emulator calls to call the driver, with a NULL pointer for entries that are not defined and
used by the driver.

The st art entry is called when the driver is opened as a port with open_port/ 2. Here we allocate memory
for a user data structure. This user data is passed every time the emulator calls us. First we store the driver
handle, as it is needed in later calls. We allocate memory for the connection handle that is used by LibPQ. We
also set the port to return allocated driver binaries, by setting flag PORT_CONTROL_FLAG_BI NARY, calling
set _port _control _fl ags.(Thisisbecausewedo not know if our datawill fitintheresult buffer of cont r ol ,
which has a default size, 64 bytes, set up by the emulator.)

Anentry i ni t iscalled when the driver isloaded. However, we do not use this, as it is executed only once, and we
want to have the possibility of several instances of the driver.

Thest op entry is called when the port is closed.

The control entry iscaled from the emulator when the Erlang code calls port _contr ol / 3, to do the actual
work. We have defined a simple set of commands. connect to log in to the database, di sconnect to log out,
and sel ect to send a SQL-query and get the result. All results are returned through r buf . The library ei in
erl _i nterface isusedtoencodedatain binary term format. Theresult isreturned to the emulator as binary terms,
sobinary_t o_termiscaledin Erlang to convert the result to term form.

Thecodeisavailablein pg_sync. ¢ inthesanpl e directory of ert s.

The driver entry contains the functions that will be called by the emulator. In this example, only st art , st op, and
cont r ol areprovided:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 63

href

1.10 How to Implement a Driver

/* Driver interface declarations */
static ErlDrvData start(ErlDrvPort port, char *command);

static void stop(ErlDrvData drv_data);

static int control(ErlDrvData drv_data, unsigned int command, char *buf,

int len, char **rbuf,

int rlen);

static ErlDrvEntry pq driver entry = {

NULL,
start,
stop,
NULL,
NULL,
NULL,
"pg_sync",
NULL,
NULL,
control,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL

+

/*

init */

output */

ready input */

ready output */

the name of the driver */
finish */

handle */

timeout */
outputv */
ready async */
flush */

call */

event */

We have a structure to store state needed by the driver, in this case we only need to keep the database connection:

typedef struct our data s {
PGconn* conn;
} our data t;

The control codes that we have defined are as follows:

/* Keep the following definitions in alignment with the

* defines in erl pqg sync.erl
*/

#define DRV_CONNECT
#define DRV_DISCONNECT
#define DRV_SELECT

c!
D!
g

Thisreturnsthedriver structure. Themacro DRI VER_| NI T definesthe only exported function. All the other functions
are static, and will not be exported from the library.

/* INITIALIZATION AFTER LOADING */

/*

* This is the init function called after this driver has been loaded.

* It must *not* be declared static.

* the driver entry.
*/

DRIVER INIT(pq drv)
{

}

return &pq driver entry;

Must return the address to

Heresomeinitiaizationisdone, st ar t iscalledfromopen_port . Thedatawill bepassedtocont r ol andst op.

64 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 How to Implement a Driver

/* DRIVER INTERFACE */
static ErlDrvData start(ErlDrvPort port, char *command)

data = (our_data t*)driver alloc(sizeof(our data t));

set port control flags(port, PORT CONTROL FLAG BINARY);

{
our _data t* data;
data->conn = NULL;
return (ErlDrvData)data;
)

We call disconnect to log out from the database. (This should have been done from Erlang, but just in case.)

static int do disconnect(our data t* data, ei x buff* x);

static void stop(ErlDrvData drv_data)

{

our data t* data = (our data t*)drv data;

do_disconnect(data, NULL);
driver free(data);

}

We use the binary format only to return data to the emulator; input data is a string parameter for connect and
sel ect . Thereturned data consists of Erlang terms.

The functions get _s and ei _x_t o_new_bi nary are utilities that are used to make the code shorter. get _s
duplicates the string and zero-terminates it, as the postgres client library wantsthat. ei _x_t o_new_bi nary takes

anei _x_buff buffer,

alocates a hinary, and copies the data there. This binary isreturned in * r buf . (Notice that

this binary is freed by the emulator, not by us.)

static char* get s(const char* buf, int len);

static int do connect(const char *s, our data t* data, ei x buff* x);
static int do select(const char* s, our data t* data, ei x buff* x);

/* As we are operating in binary mode, the return value from control

* is irrelevant, as long as it is not negative.

*/

static int control(ErlDrvData drv_data, unsigned int command, char *buf,

int len, char **rbuf, int rlen)

{
int r;
ei x buff x;
our data t* data = (our data t*)drv _data;
char* s = get s(buf, len);
ei x new with version(&x);
switch (command) {
case DRV_CONNECT: r = do_connect(s, data, &x); break;
case DRV _DISCONNECT: r = do disconnect(data, &x); break;
case DRV _SELECT: r = do_select(s, data, &x); break;
default: r=-1; break;
rbuf = (char)ei x to new binary(&x);
ei x free(&x);
driver free(s);
return r;
}

do_connect iswherewe log in to the database. If the connection was successful, we store the connection handle
in the driver data, and return ' ok' . Otherwise, we return the error message from postgres and store NULL in the

driver data

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 65

1.10 How to Implement a Driver

static int do connect(const char *s, our data t* data, ei x buff* x)

{
PGconn* conn = PQconnectdb(s);
if (PQstatus(conn) != CONNECTION OK) {
encode _error(x, conn);
PQfinish(conn);
conn = NULL;
} else {
encode ok(x);
b
data->conn = conn;
return 0;
)

If we are connected (and if the connection handle is not NULL), welog out from the database. We need to check if we
should encodean' ok' , aswe can get here from function st op, which does not return data to the emul ator:

static int do disconnect(our data t* data, ei x buff* x)
{
if (data->conn == NULL)
return 0;
PQfinish(data->conn);
data->conn = NULL;
if (x != NULL)
encode ok(x);
return 0;

}

We execute a query and encode the result. Encoding is done in another C module, pg_encode. ¢, which is aso
provided as sample code.

static int do select(const char* s, our data t* data, ei x buff* x)

{

PGresult* res = PQexec(data->conn, s);
encode result(x, res, data->conn);
PQclear(res);
return 0;

}

Here we check the result from postgres. If it is data, we encode it as lists of lists with column data. Everything from
postgres is C strings, so we use ei _x_encode_st ri ng to send the result as strings to Erlang. (The head of the
list contains the column names.)

66 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 How to Implement a Driver

void encode result(ei x buff* x, PGresult* res, PGconn* conn)
{
int row, n_rows, col, n cols;
switch (PQresultStatus(res)) {
case PGRES TUPLES OK:
n_rows = PQntuples(res);
n_cols = PQnfields(res);
ei x_encode tuple header(x, 2);
encode ok(x);
ei x_encode list header(x, n_rows+l);
ei x encode list header(x, n _cols);
for (col = 0; col < n_cols; ++col) {
ei x _encode string(x, PQfname(res, col));
}
ei x encode empty list(x);
for (row = 0; row < n_rows; ++row) {
ei x encode list header(x, n _cols);
for (col = 0; col < n_cols; ++col) {
ei x _encode string(x, PQgetvalue(res, row, col));
}
ei x encode empty list(x);
}
ei x encode empty list(x);
break;
case PGRES_COMMAND_ OK:
ei x_encode tuple header(x, 2);
encode ok(x);
ei x encode string(x, PQcmdTuples(res));
break;
default:
encode _error(x, conn);
break;

1.10.3 Compiling and Linking the Sample Driver

The driver isto be compiled and linked to a shared library (DLL on Windows). With gcc, thisis done with link flags
-shared and-f pi c. Asweusetheei library, we should includeit too. There are several versions of ei , compiled
for debug or non-debug and multi-threaded or single-threaded. In the makefile for the samples, the obj directory is
used for theei library, meaning that we use the non-debug, single-threaded version.

1.10.4 Calling a Driver as a Port in Erlang

Before adriver can be called from Erlang, it must be loaded and opened. Loading isdoneusingtheer | _ddl I module
(theer! _ddl | driver that loads dynamic driver is actualy a driver itself). If loading is successful, the port can be
opened with open_port/ 2. The port name must match the name of the shared library and the name in the driver
entry structure.

When the port has been opened, the driver can be called. In the pg_sync example, we do not have any data from
the port, only the return value from the port _control .

The following code is the Erlang part of the synchronous postgres driver, pg_sync. erl :

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 67

1.10 How to Implement a Driver

-module(pg_sync).

-define(DRV_CONNECT, 1).
-define(DRV_DISCONNECT, 2).
-define(DRV_SELECT, 3).

-export([connect/1, disconnect/1l, select/2]).

connect(ConnectStr) ->

case erl ddll:load driver(".", "pg_sync") of
ok -> ok;
{error, already loaded} -> ok;
E -> exit({error, E})

end,

Port = open_port({spawn, ?MODULE}, [1),

case binary to term(port control(Port, ?DRV_CONNECT, ConnectStr)) of
ok -> {ok, Port};
Error -> Error

end.

disconnect(Port) ->
R = binary_to_term(port_control(Port, ?DRV_DISCONNECT, "")),
port close(Port),
R.

select(Port, Query) ->
binary to term(port control(Port, ?DRV_SELECT, Query)).

The APl issimple;

* connect/ 1 loadsthedriver, opensit, and logs on to the database, returning the Erlang port if successful.
* sel ect/ 2 sendsaquery to the driver and returns the result.

» di sconnect/ 1 closesthe database connection and the driver. (However, it does not unload it.)

The connection string is to be a connection string for postgres.

Thedriverisloaded wither| _ddl | : | oad_dri ver/ 2. If thisissuccessful, or if it is already loaded, it is opened.
Thiswill call thest ar t function in the driver.

Weusetheport _control / 3 functionfor al calsintothedriver. Theresult from thedriver isreturned immediately
and converted to terms by calling bi nary_t o_t er nl 1. (Wetrust that the terms returned from the driver are well-
formed, otherwisethe bi nary_t o_t er mcalls could be containedinacat ch.)

1.10.5 Sample Asynchronous Driver

Sometimes database queries can take along time to complete, in our pg_sync driver, the emulator halts while the
driver isdoingitsjob. Thisis often not acceptable, asno other Erlang process getsachanceto do anything. Toimprove
on our postgres driver, we re-implement it using the asynchronous callsin LibPQ.

The asynchronous version of the driver isin the ssmplefilespg_async. ¢ and pg_asyng. er | .

68 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 How to Implement a Driver

/* Driver interface declarations */

static ErlDrvData start(ErlDrvPort port, char *command);

static void stop(ErlDrvData drv_data);

static int control(ErlDrvData drv_data, unsigned int command, char *buf,
int len, char **rbuf, int rlen);

static void ready io(ErlDrvData drv_data, ErlDrvEvent event);

static ErlDrvEntry pq driver entry = {

NULL, /* init */

start,

stop,

NULL, /* output */

ready io, /* ready input */
ready io, /* ready output */
"pg_async", /* the name of the driver */
NULL, /* finish */

NULL, /* handle */
control,

NULL, /* timeout */
NULL, /* outputv */
NULL, /* ready async */
NULL, /* flush */

NULL, /* call */

NULL /* event */

};

typedef struct our data t {
PGconn* conn;
ErlDrvPort port;
int socket;
int connecting;

} our data t;

Some things have changed from pg_sync.c: we use the entry ready _io for ready_input and
r eady_out put, which is caled from the emulator only when there is input to be read from the socket. (Actualy,
the socket isused inasel ect function inside the emulator, and when the socket is signaled, indicating there is data
toread, ther eady_i nput entry iscalled. More about this below.)

Our driver datais also extended, we keep track of the socket used for communication with postgres, and also the port,
which is needed when we send datato the port with dr i ver _out put . Wehaveaflagconnect i ng totell whether
the driver is waiting for a connection or waiting for the result of a query. (Thisis needed, astheentry r eady _i o is
called both when connecting and when there is a query result.)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 69

1.10 How to Implement a Driver

static int do connect(const char *s, our data t* data)

{
PGconn* conn = PQconnectStart(s);
if (PQstatus(conn) == CONNECTION BAD) {
ei x buff x;
ei x new with version(&x);
encode error(&x, conn);
PQfinish(conn);
conn = NULL;
driver output(data->port, x.buff, x.index);
ei x_free(&x);
}
PQconnectPoll(conn);
int socket = PQsocket(conn);
data->socket = socket;
driver select(data->port, (ErlDrvEvent)socket, DO READ, 1);
driver select(data->port, (ErlDrvEvent)socket, DO WRITE, 1);
data->conn = conn;
data->connecting = 1;
return 0;
)

Theconnect function looks a bit different too. We connect using the asynchronous PQconnect St art function.
After the connection is started, we retrieve the socket for the connection with PQsocket . This socket isused with the
driver _sel ect functionto wait for connection. When the socket is ready for input or for output, ther eady_i o
function is called.

Noticethat we only returndata(withdr i ver _out put) if thereisan error here, otherwise we wait for the connection
to be completed, in which case our r eady_i o function is called.

static int do select(const char* s, our data t* data)
{
data->connecting = 0;
PGconn* conn = data->conn;
/* if there's an error return it now */
if (PQsendQuery(conn, s) == 0) {
ei x_buff x;
ei x _new with version(&x);
encode _error(&x, conn);
driver output(data->port, x.buff, x.index);
ei x_free(&x);
}
/* else wait for ready output to get results */
return 0;

}

Thedo_sel ect function initiates a select, and returns if there is no immediate error. The result is returned when
ready_ioiscalled.

70 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 How to Implement a Driver

static void ready io(ErlDrvData drv_data, ErlDrvEvent event)
{
PGresult* res = NULL;
our _data t* data = (our data t*)drv_data;
PGconn* conn = data->conn;
ei x buff x;
ei x new with version(&x);
if (data->connecting) {
ConnStatusType status;
PQconnectPoll(conn);
status = PQstatus(conn);
if (status == CONNECTION OK)
encode ok (&x);
else if (status == CONNECTION BAD)
encode _error(&x, conn);
} else {
PQconsumeInput(conn);
if (PQisBusy(conn))
return;
res = PQgetResult(conn);
encode result(&x, res, conn);
PQclear(res);
for (;;) {
res = PQgetResult(conn);
if (res == NULL)
break;
PQclear(res);
}
)
if (x.index > 1) {
driver output(data->port, x.buff, x.index);
if (data->connecting)
driver select(data->port, (ErlDrvEvent)data->socket, DO WRITE, 0);

ei x_free(&x);

}

Ther eady_i o function is called when the socket we got from postgres is ready for input or output. Here we first
check if we are connecting to the database. In that case, we check connection status and return OK if the connection is
successful, or error if it isnot. If the connection is not yet established, we simply return; r eady i o iscalled again.

If we have a result from a connect, indicated by having data in the x buffer, we no longer need to select on output
(r eady_out put), soweremovethisby calingdri ver _sel ect.

If we are not connecting, we wait for results from a PQsendQuer y, so we get the result and return it. The encoding
is done with the same functions asin the earlier example.

Error handling isto be added here, for example, checking that the socket is still open, but thisisonly asimple example.
The Erlang part of the asynchronous driver consists of the sasmplefilepg_async. erl .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 71

1.10 How to Implement a Driver

-module(pg _async).

-define(DRV_CONNECT, $C).
-define(DRV_DISCONNECT, $D).
-define(DRV_SELECT, $S).

-export([connect/1, disconnect/1l, select/2]).

connect(ConnectStr) ->
case erl ddll:load driver(".", "pg_async") of
ok -> ok;
{error, already loaded} -> ok;
_ -> exit({error, could not load driver})
end,
Port = open port({spawn, ?MODULE}, [binaryl),
port control(Port, ?DRV_CONNECT, ConnectStr),
case return port data(Port) of
ok ->
{ok, Port};
Error ->
Error
end.

disconnect(Port) ->
port control(Port, ?DRV_DISCONNECT, ""),
R = return port data(Port),
port close(Port),
R.

select(Port, Query) ->
port control(Port, ?DRV_SELECT, Query),
return_port data(Port).

return_port data(Port) ->
receive
{Port, {data, Data}} ->
binary to term(Data)
end.

The Erlang code is dlightly different, as we do not return the result synchronously from port _cont r ol , instead we
getitfromdri ver _out put asdatainthemessagequeue. Thefunctionr et ur n_port _dat a abovereceivesdata
from the port. Asthe dataisin binary format, we use bi nary_t o_t er m 1 to convert it to an Erlang term. Notice
that the driver isopenedin binary mode (open_port/ 2 iscaledwithoption[bi nar y]). Thismeansthat data sent
from the driver to the emulator is sent as binaries. Without option bi nar y, they would have been lists of integers.

1.10.6 An Asynchronous Driver Using driver_async

As afina example we demonstrate the use of dri ver _async. We aso use the driver term interface. The driver is
written in C++. This enables us to use an algorithm from STL. We use the next _per nut at i on agorithm to get
the next permutation of alist of integers. For large lists (> 100,000 elements), this takes some time, so we perform
this as an asynchronous task.

The asynchronous API for drivers is complicated. First, the work must be prepared. In the example, thisis done in
out put . We could have used cont r ol , but we want some variation in the examples. In our driver, we allocate
a structure that contains anything that is needed for the asynchronous task to do the work. Thisis done in the main
emulator thread. Then the asynchronousfunction iscalled from adriver thread, separate from the main emulator thread.
Noticethat the driver functionsare not re-entrant, so they are not to be used. Finally, after the functioniscompleted, the
driver callback r eady_async is called from the main emulator thread, thisis where we return the result to Erlang.
(We cannot return the result from within the asynchronous function, as we cannot call the driver functions.)

72 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 How to Implement a Driver

The following code is from the sample file next _per m cc. The driver entry looks like before, but aso contains
the callback r eady_async.

static ErlDrvEntry next perm driver entry = {

NULL, /* init */

start,

NULL, /* stop */

output,

NULL, /* ready input */
NULL, /* ready output */
"next_perm", /* the name of the driver */
NULL, /* finish */

NULL, /* handle */

NULL, /* control */
NULL, /* timeout */
NULL, /* outputv */
ready async,

NULL, /* flush */

NULL, /* call */

NULL /* event */

}

Theout put function allocates the work area of the asynchronous function. Aswe use C++, we use a struct, and stuff
the datain it. We must copy the original data, it is not valid after we have returned from the out put function, and
the do_per mfunction is called later, and from another thread. We return no data here, instead it is sent later from
ther eady_async calback.

Theasync_dat a is passed to the do_per mfunction. We do not useaasync_f r ee function (the last argument
todriver_async),itisonly used if thetask is cancelled programmatically.

struct our_async data {
bool prev;
vector<int> data;
our_async _data(ErlDrvPort p, int command, const char* buf, int len);

}i

our_async _data::our_async data(ErlDrvPort p, int command,
const char* buf, int 1len)
: prev(command == 2),
data((int*)buf, (int*)buf + len / sizeof(int))
{
)

static void do perm(void* async_data);

static void output(ErlDrvData drv_data, char *buf, int len)

{
if (*buf < 1 || *buf > 2) return;
ErlDrvPort port = reinterpret cast<kErlDrvPort>(drv_data);
void* async data = new our _async data(port, *buf, buf+l, len);
driver async(port, NULL, do perm, async data, do free);

}

Inthedo_per mwe do the work, operating on the structure that was allocated in out put .

static void do perm(void* async data)

{
our_async _data* d = reinterpret cast<our async data*>(async data);
if (d->prev)
prev_permutation(d->data.begin(), d->data.end());
else
next permutation(d->data.begin(), d->data.end());
}

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 73

1.10 How to Implement a Driver

In the r eady_async function the output is sent back to the emulator. We use the driver term format instead
of ei . This is the only way to send Erlang terms directly to a driver, without having the Erlang code to call
bi nary_to_terni 1. Inthe simple example this works well, and we do not need to use ei to handle the binary
term format.

When the datais returned, we deallocate our data

static void ready async(ErlDrvData drv_data, ErlDrvThreadData async data)
{
ErlDrvPort port = reinterpret cast<ErlDrvPort>(drv_data);
our_async data* d = reinterpret cast<our async data*>(async data);
int n = d->data.size(), result n = n*2 + 3;
ErlDrvTermData *result = new ErlDrvTermData[result n], *rp = result;
for (vector<int>::iterator i = d->data.begin();
i !'= d->data.end(); ++i) {
*rp++ = ERL_DRV_INT;
*rp++ *i;

}
*rp++ = ERL DRV NIL;

*rp++ = ERL DRV_LIST;

*rp++ n+l;

driver output term(port, result, result n);
delete[] result;

delete d;

}

Thisdriver is called like the others from Erlang. However, aswe use dri ver _out put _t er m there is no need to
cal bi nary_t o_t er m The Erlang codeisin the samplefilenext _perm erl .

The input is changed into alist of integers and sent to the driver.

74 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 Inet Configuration

-module(next _perm).
-export([next perm/1l, prev_perm/1, load/0, all perm/1]).

load() ->
case whereis(next perm) of
undefined ->

case erl ddll:load driver(".", "next perm") of
ok -> ok;
{error, already loaded} -> ok;
E -> exit(E)

end,

Port = open port({spawn, "next perm"}, []),

register(next perm, Port);

->
ok

end.

list to integer binaries(L) ->
[<<I:32/integer-native>> || I <- L].

next perm(L) ->
next perm(L, 1).

prev_perm(L) ->
next perm(L, 2).

next perm(L, Nxt) ->
load(),
B = list to integer binaries(L)
port control(next perm, Nxt, B)
receive
Result ->
Result

’
’

end.

all perm(L) ->
New = prev_perm(L),
all perm(New, L, [New]).

all perm(L, L, Acc) ->
Acc;
all perm(L, Orig, Acc) ->
New = prev_perm(L),
all perm(New, Orig, [New | Accl).

1.11 Inet Configuration
1.11.1 Introduction

This section describes how the Erlang runtime system is configured for IP communication. It also explains how you
can configure it for your needs by a configuration file. The information is primarily intended for users with special
configuration needs or problems. There is normally no need for specific settings for Erlang to function properly on
acorrectly IP-configured platform.

When Erlang starts up it reads the Kernel variable i net r c, which, if defined, is to specify the location and name
of auser configuration file. Example:

% erl -kernel inetrc '"./cfg files/erl inetrc"'

Noticethat theuse of an . i net r c¢ file, which was supported in earlier Erlang/OTP versions, is now obsolete.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 75

1.11 Inet Configuration

A second way to specify the configuration file is to set environment variable ERL_|I NETRC to the full name of the
file. Example (bash):

% export ERL_INETRC=./cfg_files/erl_inetrc

Notice that the Kernel variablei net r ¢ overrides this environment variable.

If no user configuration file is specified and Erlang is started in non-distributed or short name distributed mode,
Erlang uses default configuration settings and a native lookup method that works correctly under most circumstances.
Erlang reads no information from system i net configuration files (such as / et ¢/ host. conf and /etc/
nsswi t ch. conf) inthese modes, except for/ et ¢/ r esol v. conf and/ et ¢/ host s that isread and monitored
for changes on Unix platforms for the internal DNSclienti net _res(3).

If Erlang is started in long name distributed mode, it needs to get the domain name from somewhere and reads system
i net configuration filesfor thisinformation. Any hosts and resolver information found is also recorded, but not used
aslong as Erlang is configured for native lookups. The information becomes useful if the lookup method is changed
to'file' or'dns', seebeow.

Native lookup (system calls) is always the default resolver method. Thisistruefor all platforms, except VxWorks and
OSE Deltawhere' fil e' or' dns' isused (inthat priority order).

On Windows platforms, Erlang searches the system registry rather than looks for configuration files when started in
long name distributed mode.

1.11.2 Configuration Data
Erlang records the following datain alocal databaseif found in systemi net configuration files (or system registry):

* Hostnames and host addresses

e Domain name

¢ Nameservers

* Search domains

e Lookup method

This data can also be specified explicitly in the user configuration file. Thisfile is to contain lines of configuration
parameters (each terminated with a full stop). Some parameters add data to the configuration (such as host and
nameserver), others overwrite any previous settings (such as domain and lookup). The user configuration fileisalways

examined last in the configuration process, making it possible for the user to override any default values or previously
made settings. Call i net : get _rc() toview the state of thei net configuration database.

The valid configuration parameters are as follows:
{file, Format, File}.
Format = atom()
File = string()
Specify a system file that Erlang is to read configuration data from. For mat tells the parser how the file is to
be interpreted:
e resol v (Unix resolv.conf)
* host_conf_freebsd (FreeBSD host.conf)
« host _conf _bsdos (BSDOS host.conf)
e host _conf _|i nux (Linux host.conf)
e nsswitch_conf (Unix nsswitch.conf)
e host s (Unix hosts)

Fi | e isto specify the filename with full path.

76 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 Inet Configuration

{resolv_conf, File}.
File = string()

Specify a system file that Erlang is to read resolver configuration from for the internal DNS client
i net _res(3), and monitor for changes, even if it does not exist. The path must be absolute.

This can override the configuration parameters naneser ver and sear ch depending on the contents of the
specified file. They can also change any time in the future reflecting the file contents.

If the file is specified as an empty string " ", no file is read or monitored in the future. This emulates the old
behavior of not configuring the DNS client when the node is started in short name distributed mode.

If this parameter is not specified, it defaults to /et c/resol v. conf unless environment variable
ERL_I NET_ETC_DI Ris set, which defines the directory for thisfile to some maybe other than/ et c.

{hosts _file, File}.
File = string()

Specify a system file that Erlang is to read resolver configuration from for the internal hosts file resolver, and
monitor for changes, even if it does not exist. The path must be absolute.

These host entries are searched after al added with {file, hosts, File} aboveor{host, 1P,
Al i ases} below when lookup optionf i | e isused.

If the file is specified as an empty string " ", no file is read or monitored in the future. This emulates the old
behavior of not configuring the DNS client when the node is started in short name distributed mode.

If this parameter is not specified, it defaults to /etc/hosts unless environment variable
ERL_I NET_ETC_DI Ris set, which defines the directory for thisfile to some maybe other than/ et c.

{registry, Type}.

Type = atom()

Specify a system registry that Erlang is to read configuration data from. wi n32 isthe only valid option.
{host, I P, Aliases}.

I P = tuple()

Aliases = [string()]

Add host entry to the hosts table.
{domai n, Donai n}.

Domain = string()

Set domain name.
{naneserver, IP [,Port]}.

I P = tuple()

Port = integer()

Add address (and port, if other than default) of the primary nameserver to usefori net _res(3).
{al t _nameserver, IP [,Port]}.

I P = tuple()

Port = integer()

Add address (and port, if other than default) of the secondary nameserver fori net _res(3).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 77

1.11 Inet Configuration

{search, Domai ns}.
Domains = [string()]
Add search domainsfori net _res(3).
{I ookup, Methods}.
Met hods = [atom()]
Specify lookup methods and in which order to try them. The valid methods are as follows:

 native (usesystem cals)
e fil e (usehost dataretrieved from system configuration files and/or the user configuration file)
e dns (usethe Erlang DNSclienti net _r es(3) for nameserver queries)

The lookup method st ri ng tries to parse the hosthame as an 1Pv4 or IPv6 string and return the resulting 1P
address. Itisautomatically tried first whennat i ve isnot inthe Met hods list. To skip it in this case, the pseudo
lookup method nost r i ng can be inserted anywhere in the Met hods list.

{cache_si ze, Size}.

Size = integer()

Set the resolver cache size for dns lookups. nat i ve lookups are not cached. Defaultsto 100 DNS records.
{cache_refresh, Tine}.

Time = integer()

Set how often (in milliseconds) the resolver cachefori net _r es(3) isrefreshed (that is, expired DNS records
are deleted). Defaultsto 1 hour.

{tinmeout, Tine}.

Time = integer()

Set thetimeto wait until retry (in milliseconds) for DNS queriesmadeby i net _r es(3) . Defaultsto 2 seconds.
{retry, N}.

N = integer()

Set the number of DNS queriesi net _r es(3) will try before giving up. Defaultsto 3.
{servfail _retry timeout, Tine}.

Time = non_neg_integer ()

After all name servers have been tried, thereisatimeout before the name serversaretried again. Thisisto prevent
the server from answering the query with what's in the servfail cache, i net _r es(3) . Defaults to 1500 milli

seconds .
{inet6, Bool}.
Bool = true | false

Tellsthe DNSclienti net _r es(3) tolook up IPv6 addresses. Defaultstof al se.
{usevc, Bool}.

Bool = true | false

Tellsthe DNSclienti net _r es(3) touse TCP (Virtual Circuit) instead of UDP. Defaultstof al se.
{edns, Version}.

Version = false | O

78 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 Inet Configuration

Sets the EDNS version that i net _res(3) will use. The only allowed version is zero. Defaults to f al se,

which means not to use EDNS.
{udp_payl oad_si ze, Size}.
N = integer()

Sets the allowed UDP payload size i net _r es(3) will advertise in EDNS queries. Also sets the limit when
the DNS query will be deemed too large for UDP forcing a TCP query instead; this is not entirely correct, as
the advertised UDP payload size of the individual nameserver iswhat isto be used, but this smple strategy will
do until amore intelligent (probing, caching) algorithm needs to be implemented. Default to 1280, which stems

from the standard Ethernet MTU size.
{udp, Mbdul e}.
Modul e = atom()

Tell Erlang to use another primitive UDP module thani net _udp.

{tcp, Modul e}.
Modul e = atom()

Tell Erlang to use another primitive TCP modulethani net _t cp.

cl ear _hosts.

Clear the hosts table.
cl ear _ns.

Clear the list of recorded nameservers (primary and secondary).
cl ear _search.

Clear thelist of search domains.

1.11.3 User Configuration Example

Assume that a user does not want Erlang to use the native lookup method, but wants Erlang to read all information
necessary from start and use that for resolving names and addresses. If lookup fails, Erlang is to request the datafrom
anameserver (using the Erlang DNS client, set to use EDNS allowing larger responses). The resolver configuration
is updated when its configuration file changes. Also, DNS records are never to be cached. The user configuration file
(inthisexamplenamed er | _i net r c, stored in directory . / cf g_f i | es) can then look as follows (Unix):

% -- ERLANG INET CONFIGURATION FILE --

% read the hosts file

{file, hosts, "/etc/hosts"}.

%% add a particular host

{host, {134,138,177,105}, ["finwe"]}.

%% do not monitor the hosts file

{hosts file, ""}.

%% read and monitor nameserver config from here
{resolv_conf, "/usr/local/etc/resolv.conf"}.
%% enable EDNS

{edns,0}.

%% disable caching

{cache size, 0}.

%% specify lookup method

{lookup, [file, dns]}.

[
o
[

o

And Erlang can, for example, be started as follows:

% erl -sname my node -kernel inetrc '"./cfg files/erl inetrc

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 79

1.12 External Term Format

1.12 External Term Format
1.12.1 Introduction

The external term format is mainly used in the distribution mechanism of Erlang.

As Erlang has a fixed number of types, there is no need for a programmer to define a specification for the externa
format used within some application. All Erlang terms have an external representation and the interpretation of the
different terms is application-specific.

InErlangthe BIF er| ang: term t o_bi nary/ 1, 2 isused to convert aterm into the external format. To convert
binary dataencoding to aterm, the BIF er | ang: bi nary_to_term 1 isused.

The distribution does this implicitly when sending messages across node boundaries.

The overall format of the term format is as follows:

1 1 N

131 Tag Dat a

Table 12.1: Term Format

When messages are passed between connected nodes and a distribution header is used, the first byte containing
the version number (131) is omitted from the terms that follow the distribution header. Thisis because the version
number isimplied by the version number in the distribution header.

The compressed term format is as follows:

1 1 4 N
131 80 Unconpr essedSi ze Zli b-
P conpr essedDat a

Table 12.2: Compressed Term Format

Uncompressed size (unsigned 32-hit integer in big-endian byte order) is the size of the data before it was compressed.
The compressed data has the following format when it has been expanded:

1 Uncompressed Size

Tag Dat a

Table 12.3: Compressed Data Format when Expanded

1.12.2 Encoding atoms
Asfrom ERTS 9.0 (OTP 20), atoms may contain any Unicode characters.

80 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 External Term Format

Atoms sent over node distribution are aways encoded in UTF-8 using either ATOM UTF8_ EXT,
SMALL_ATOM UTF8_EXT or ATOM CACHE_REF.

Atoms encoded with erl ang:termto_binary/1,2 or erlang:termto_iovec/1, 2 are by default
still using the old deprecated Latin-1 format ATOM _EXT for atoms that only contain Latin-1 characters (Unicode
cade points 0-255). Atoms with higher code points will be encoded in UTF-8 using either ATOM _UTF8_EXT or
SMALL_ATOM UTF8_EXT.

The maximum number of allowed characters in an atom is 255. In the UTF-8 case, each character can need 4 bytes
to be encoded.

1.12.3 Distribution Header

The distribution header is sent by the erlang distribution to carry metadata about the coming control message and
potential payload. It isprimarily used to handlethe atom cacheinthe Erlang distribution. Since OTP-22itisalso used to
fragment large distribution messagesinto multiple smaller fragments. For moreinformation about how the distribution
usesthedistribution header, see the documentation of the protocol between connected nodesin the distribution protocol
documentation.

Any ATOM_CACHE_REF entries with corresponding At onCacheRef er encel ndex in terms encoded on the
external format following a distribution header refer to the atom cache references made in the distribution header. The
rangeis 0 <= At onCacheRef er encel ndex < 255, that is, at most 255 different atom cache references from the
following terms can be made.

Normal Distribution Header

The non-fragmented distribution header format is as follows:

1 1 1 NumberOfAt01n0CacheRefs 2+1 N |0
131 68 Nurfber O At onCacheRgefs Fl ags At onCacheRef s

Table 12.4: Normal Distribution Header Format

Fl ags consist of Number OF At onTCacheRef s/ 2+1 bytes, unless Nunber Of At onCacheRef s is 0. If
Number O At onCacheRef s is 0, Fl ags and At onCacheRef s are omitted. Each atom cache reference has
a half byte flag field. Flags corresponding to a specific At onCacheRef er encel ndex are located in flag byte
number At onCacheRef er encel ndex/ 2. Flag byte 0 is the first byte after the Nunber OF At onCacheRef s
byte. Flagsfor an even At onCacheRef er encel ndex arelocated in the least significant half byte and flags for an
odd At onCacheRef er encel ndex are located in the most significant half byte.

Theflag field of an atom cache reference has the following format:

1 bit 3 bits

NewCacheEnt r yFl ag Segrent | ndex

Table 12.5:

The most significant bit is the NewCacheEnt r yFl ag. If set, the corresponding cache reference is new. The three
least significant bits are the Segrrent | ndex of the corresponding atom cache entry. An atom cache consists of 8
segments, each of size 256, that is, an atom cache can contain 2048 entries.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 81

1.12 External Term Format

Another half byte flag field is located aong with flag fields for atom cache references. When
Nunmber OF At onCacheRef s is even, this half byte is the least significant half byte of the byte that follows the
atom cache references. When Nunber OF At onCacheRef s is odd, this half byte is the most significant half byte
of the last byte of the atom cache references (on the wire, it will appear before the last cache reference). It has the
following format:

3 bits 1 bit

Currentl yUnused LongAt ons

Table 12.6:

The least significant bit in that half byte is flag LongAt ons. If it is set, 2 bytes are used for atom lengths instead
of 1 bytein the distribution header.

After the Fl ags field follow the At omCacheRef s. The first At omCacheRef is the one corresponding to
At onCacheRef er encel ndex 0. Higher indices follow in sequence up to index Nunber OfF At omCacheRef s
- 1.

If the NewCacheEnt r yFI ag for the next At onCacheRef hasbeen set, aNewAt omCacheRef onthefollowing
format follows:

1 1|12 Length

I nt er nal Segnent | ndex Length At onText

Table 12.7:

I nt er nal Segnent | ndex together with the Segnent | ndex completely identify the location of an atom
cache entry in the atom cache. Lengt h is the number of bytes that At onTText consists of. Length is a 2
byte big-endian integer if flag LongAt ons has been set, otherwise a 1 byte integer. When distribution flag
DFLAG UTF8_ ATOMS has been exchanged between both nodes in the distribution handshake, characters in
At onTText are encoded in UTF-8, otherwise in Latin-1. The following CachedAt onRef s with the same
Segrrent | ndex and | nt er nal Segnent | ndex as this NewAt onCacheRef refer to this atom until a new
NewAt ontCacheRef with the same Segnent | ndex and | nt er nal Segrent | ndex appear.

For more information on encoding of atoms, see the section on UTF-8 encoded atoms above.

If the NewCacheEnt r yFl ag for the next At ontCacheRef hasnot been set, aCachedAt onRef on thefollowing
format follows:

1

I nt er nal Segnment | ndex

Table 12.8:

I nt er nal Segnent | ndex together with the Segrment | ndex identify the location of the atom cache entry in the
atom cache. The atom corresponding to this CachedAt onRef is the latest NewAt onCacheRef preceding this
CachedAt onRef inanother previously passed distribution header.

82 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 External Term Format

Distribution Header for fragmented messages

M essages sent between Erlang nodes can sometimes be quite large. Since OTP-22 it is possible to split large messages
into smaller fragments in order to alow smaller messages to be interleaved between larges messages. It is only the
message part of each distributed message that may be split using fragmentation. Thereforeit is recommended to use
the PAYLOAD control messages introduced in OTP-22.

Fragmented distribution messages are only used if the receiving node signals that it supports them via the
DFLAG_FRAGMENTS distribution flag.

A process must complete the sending of a fragmented message before it can start sending any other message on the
same distribution channel.

The start of a sequence of fragmented messages |ooks like this:

Numbe'OfAtomCachePefs/2+'Q] 10

1 1 8 8 1 10

131 69 Sequencel d | Fr agnexuriaer OF At onCachFRer ags AtonCacheRefs

Table 12.9: Starting Fragmented Distribution Header Format

The continuation of a sequence of fragmented messages |ooks like this:

1 1 8 8

131 70 Sequencel d Fragnent!ld

Table 12.10: Continuing Fragmented Distribution Header Format

The starting distribution header is very similar to a non-fragmented distribution header. The atom cache works the
same as for normal distribution header and is the same for the entire sequence. The additional fields added are the
sequence id and fragment id.

Sequence ID

The sequenceid is used to uniquely identify afragmented message sent from one process to another on the same
distributed connection. Thisis used to identify which sequence a fragment is a part of as the same process can
be in the process of receiving multiple sequences at the same time.

As one process can only be sending one fragmented message at once, it can be convenient to use the local PID
asthe sequence id.

Fragments ID

The Fragment ID is used to number the fragments in a sequence. The id starts at the total number of fragments
and then decrementsto 1 (which isthe final fragment). So if a sequence consists of 3 fragments the fragment id
in the starting header will be 3, and then fragments 2 and 1 are sent.

The fragments must be delivered in the correct order, so if an unordered distribution carrier is used, they must
be ordered before delivered to the Erlang run-time.

Example:

Asan example, let say that wewanttosend{cal | , <0.245.2>, {set get state, <<0:1024>>}} to
registered processr eg using afragment size of 128. To send this message we need a distribution header, atom cache

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 83

1.12 External Term Format

updates, the control message (which would be{ 6, <0.245.2>, [], reg} inthiscase) andfinaly the actua
message. Thiswould all be encoded into:

131,69,0,0,2,168,0,0,5,83,0,0,0,0,0,0,0,2,
5,4,137,9,10,5,236,3,114,101,163,9,4,99,97,108,108,
238,13,115,101,116,95,163,101,116,95,115,116,97,116, 101,
104,4,97,6,103,82,0,0,0,0,85,0,0,0,0,2,82,1,82,2,
104,3,82,3,103,82,0,0,0,0,245,0,0,0,2,2,
2,4,109,0,0,0,128,0,0,0,0,0,0,0,0,0,0,0,0,0,

Header with seq and frag id
Atom cache updates

o of

)
i)
)

)

Control message
Actual message using cached atoms

o of

)
i)
)

)

1041218 ’ ’ ’ ’ ’ r ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
0,
0,0,0,0,0,0,0,0,0,G,0,0,0,0,0,0,0,0,0,0,0,0,0'0'9'
0,0,0,0,0,0,0,0,0,G,0,0,0,0,0,0,0,0,0,0,0,0,0'0'9'

9,0,0,0,0,0,0,0,0,0,0,0,0,0,0

131,70,0,0,2,168,0,0,5,83,0,0,0,0,0,0,0,1, %% Cont Header with seq and frag id
9,0, %% Rest of payload

0,0,0,0

Let us break that apart into its components. First we have the distribution header tags together with the sequence id
and afragment id of 2.

131,69, %% Start fragment header
0,0,2,168,0,0,5,83, %% The sequence ID
0,0,0,0,0,0,0,2, %% The fragment ID

Then we have the updates to the atom cache;

5,4,137,9, %% 5 atoms and their flags

10,5, %% The already cached atom ids

236,3,114,101,103, %% The atom 'reg'

9,4,99,97,108,108, %% The atom 'call'
238,13,115,101,116,95,103,1601,116,95,115,116,97,116,101, %% The atom 'set get state'

The first byte says that we have 5 atoms that are part of the cache. Then follows three bytes that are the atom cache
ref flags. Each of the flags uses 4 bits so they are a bit hard to read in decimal byte form. In binary half-byte form
they look like this:

0000, 0160, 1600, 1001, 1001

As the high bit of the first two atoms in the cache are not set we know that they are aready in the cache, so they do
not have to be sent again (this is the node name of the receiving and sending node). Then follows the atoms that have
to be sent, together with their segment ids.

Then thelisting of the atoms comes, starting with 10 and 5 which are the atom refs of the already cached atoms. Then
the new atoms are sent.

When the atom cache is setup correctly the control message is sent.
104,4,97,6,103,82,0,0,0,0,85,0,0,0,0,2,82,1,82,2,

Note that up until hereit is not allowed to fragments the message. The entire atom cache and control message has to
be part of the starting fragment. After the control message the payload of the message is sent using 128 bytes:

Since the payload is larger than 128-bytesit is split into two fragments. The second fragment does not have any atom
cache update instructions so it isalot simpler:

84 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 External Term Format

ontinuation dist header 70 with seq and frag id

0,0,2,168,0,0,5,8
, emaining payload

31010101910:0,0,1, %%
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %%

S5 0O

The fragment size of 128 is only used as an example. Any fragments size may be used when sending fragmented
messages.

1.12.4 ATOM_CACHE_REF

1 1

82 At onCacheRef er encel ndex

Table 12.11: ATOM_CACHE_REF

Refers to the atom with At onCacheRef er encel ndex in the distribution header.

1.12.5 SMALL_INTEGER_EXT

1 1

97 I nt

Table 12.12: SMALL_INTEGER_EXT

Unsigned 8-bit integer.
1.12.6 INTEGER_EXT

1 4

98 I nt

Table 12.13: INTEGER_EXT

Signed 32-bit integer in big-endian format.

1.12.7 FLOAT_EXT

1 31

99 Fl oat string

Table 12.14: FLOAT_EXT

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 85

1.12 External Term Format

A finite float (i.e. not inf, -inf or NaN) is stored in string format. The format used in sprintf to format the float is
"%.20€e" (there are more bytes allocated than necessary). To unpack the float, use sscanf with format " %olf".

Thisterm isused in minor version O of the external format; it has been superseded by NEW FLOAT _EXT.

1.12.8 PORT_EXT

1 N 4 1

102 Node ID Creation

Table 12.15: PORT_EXT

Same as NEW PORT_EXT except the Cr eat i on field is only one byte and only two bits are significant, the rest
areto beO.

1.12.9 NEW_PORT_EXT

1 N 4 4

89 Node ID Creation

Table 12.16: NEW_PORT EXT

Same asV4_PORT_EXT except thel Dfield is only four bytes. Only 28 bits are significant; the rest areto be 0.
NEW PORT_EXT was introduced in OTP 19, but only to be decoded and echoed back. Not encoded for local ports.

In OTP 23 distribution flag DFLAG Bl G_CREATI ON became mandatory. All ports are now encoded using
NEW PORT_EXT, even external ports received as PORT_EXT from older nodes.

1.12.10 V4 PORT EXT

1 N 8 4

120 Node ID Creation

Table 12.17: V4_PORT_EXT

Encodes a port identifier (obtained from er | ang: open_port/ 2). Node is the originating node, encoded as an
atom. | Dis a64-bit big endian unsigned integer. The Cr eat i on worksjust likein NEW Pl D_EXT. Port operations
are not allowed across node boundaries.

V4 _PORT_EXT wasintroduced in OTP 24, but only to be decoded and echoed back. Not encoded for local ports.

1.12.11 PID_EXT

86 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 External Term Format

103

Node

Seri al

Creation

Table 12.18: PID_EXT

Same as NEW Pl D_EXT except the Cr eat i on field is only one byte and only two bits are significant, the rest are

to beO.

1.12.12 NEW_PID_EXT

1

N

4

88

Node

Seri al

Creation

Table 12.19: NEW_PID_EXT

Encodes an Erlang process identifier object.
Node

The name of the originating node, encoded as an atom.
I D

A 32-bit big endian unsigned integer. If distribution flag DFLAG V4_NC is not set, only 15 bits may be used
and the rest must be 0.

Seri al

A 32-bit big endian unsigned integer. If distribution flag DFLAG_V4_NCis not set, only 13 bits may be used
and the rest must be 0.

Creation

A 32-bit big endian unsigned integer. All identifiers originating from the same node incarnation must have
identical Cr eat i on values. This makes it possible to separate identifiers from old (crashed) nodes from a new
one. The value zero should be avoided for normal operations asit is used as awild card for debug purpose (like
apid returned by erlang:list_to_pid/1).

NEW PI D_EXT wasintroduced in OTP 19, but only to be decoded and echoed back. Not encoded for local processes.

In OTP 23 distribution flag DFLAG Bl G_CREATI ON became mandatory. All pids are now encoded using
NEW PI D_EXT, even external pidsreceived as Pl D_EXT from older nodes.

In OTP 24 distribution flag DFLAG_V4_NCwasintroduced, accepting full 64-bit pidsto be decoded and echoed back.

1.12.13 SMALL_TUPLE_EXT

1 1 N

104 Arity El enent s

Table 12.20: SMALL_TUPLE_EXT

Encodes a tuple. The Ari ty field is an unsigned byte that determines how many elements that follows in section
El ement s.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 87

1.12 External Term Format

1.12.14 LARGE_TUPLE_EXT

1

N

105

Arity

El ement s

Table 12.21: LARGE_TUPLE_EXT

Sameas SMALL_TUPLE_EXT except that Ar i t y isan unsigned 4 byte integer in big-endian format.

1.12.15 MAP_EXT

1

116

Arity

Pairs

Table 12.22: MAP_EXT

Encodes amap. The Ari ty field is an unsigned 4 byte integer in big-endian format that determines the number of
=> Vi) are encoded in section Pai r s in the following order:
Vn. Duplicate keys are not allowed within the same map.

key-value pairsin the map. Key and value pairs (Ki

K1, Vi, K2, V2,..., Kn,
Asfrom Erlang/OTP 17.0

1.12.16 NIL _EXT

106

Table 12.23: NIL_EXT

The representation for an empty list, that is, the Erlang syntax [] .

1.12.17 STRING_EXT

1

Len

107

Lengt h

Characters

Table 12.24: STRING_EXT

String does not have a corresponding Erlang representation, but is an optimization for sending lists of bytes (integer
in the range 0-255) more efficiently over the distribution. Asfield Lengt h isan unsigned 2 byte integer (big-endian),

implementations must ensure that lists longer than 65535 elements are encoded as L1 ST_EXT.

88 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 External Term Format

1.12.18 LIST _EXT

1 4

108 Length El ement s Tai |

Table 12.25: LIST_EXT

Lengt h isthe number of elementsthat followsin section El enent s. Tai | isthefinal tail of thelist; itisNI L_EXT
for aproper list, but can be any typeif thelist isimproper (for example, [a| b]).

1.12.19 BINARY_EXT

1 4 Len

109 Len Dat a

Table 12.26: BINARY_EXT

Binaries are generated with bit syntax expresson or with erlang:list_to_binary/1,
erlang:termto_binary/ 1, orasinput from binary ports. The Len length field is an unsigned 4 byte integer
(big-endian).

1.12.20 SMALL BIG_EXT

1 1 1 n

110 n Si gn d(0) ..d(n-1)

Table 12.27: SMALL BIG_EXT

Bignums are stored in unary form with a Si gn byte, that is, O if the bignum is positive and 1 if it is negative. The
digits are stored with the least significant byte stored first. To calculate the integer, the following formula can be used:

B =256
(do*BM"O + d1*Bh1 + d2*Br2 + ...

1.12.21 LARGE_BIG_EXT

d(N-1)*B~(n-1))

1

n

111

Si gn

d(0) ...d(n-1)

Table 12.28:

Sameas SMALL Bl G_EXT except that the length field is an unsigned 4 byte integer.

LARGE_BIG_EXT

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 89

1.12 External Term Format

1.12.22 REFERENCE_EXT (deprecated)

1 N 4 1
101 Node I D Creation
Table 12.29: REFERENCE_EXT
The same as NEW REFERENCE_EXT except | Disonly oneword (Len = 1).
1.12.23 NEW _REFERENCE_EXT
1 2 N 1 N’
114 Len Node Creation ID .
Table 12.30: NEW_REFERENCE_EXT
The same as NEWER_REFERENCE _EXT except:
I D
In the first word (4 bytes) of | D, only 18 bits are significant, the rest must be 0.
Creation
Only one byte long and only two bits are significant, the rest must be 0.
1.12.24 NEWER_REFERENCE_EXT
1 2 N 4 N'
90 Len Node Creation ID.
Table 12.31: NEWER REFERENCE_EXT

Encodes areference term generated with erlang:make ref/0.
Node

The name of the originating node, encoded as an atom.
Len

A 16-bit big endian unsigned integer not larger than 5 when the DFLAG_V4_NC has been set; otherwise not
larger than 3.

ID

A sequence of Len big-endian unsigned integers (4 bytes each, so N = 4 * Len), but is to be regarded as
uninterpreted data.

Creation
Worksjust likein NEW Pl D_EXT.

90 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 External Term Format

NEWER_REFERENCE EXT was introduced in OTP 19, but only to be decoded and echoed back. Not encoded for
local references.

In OTP 23 distribution flag DFLAG_BI G_CREATI ON became mandatory. All references are now encoded using
NEVWER REFERENCE EXT, even external references received as NEW REFERENCE EXT from older nodes.

1.12.25 FUN_EXT

1 4 N1 N2 N3 N4 N5
117 NunFr ee Pi d Mbdul e I ndex Uni q Free
vars ...
Table 12.32: FUN_EXT

Pid

A processidentifier asin Pl D_EXT. Represents the process in which the fun was created.
Modul e

The module that the fun is implemented in, encoded as an atom.
| ndex

An integer encoded using SMALL_| NTEGER_EXT or | NTEGER_EXT. It is typically a small index into the
module's fun table.

Uni g

An integer encoded using SMALL | NTEGER _EXT or | NTEGER_EXT. Uni q isthe hash value of the parse for
the fun.

Free vars
Nuntr ee number of terms, each one encoded according to its type.

1.12.26 NEW_FUN_EXT

1 4 1 16 4 4 N1 N2 N3 N4 N5
. Free
112 Size | Arity | Uniqg [Index |[Nunfree|lMdul e dl ndexd duniq] Pid Var s
Table 12.33: NEW_FUN_EXT
Thisisthe new encoding of internal funs: f un F/ Aandfun(Argl,..) -> ... end.

Si ze
Thetotal number of bytes, including field Si ze.
Arity
The arity of the function implementing the fun.
Uni g
The 16 bytes MD5 of the significant parts of the Beam file.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 91

1.12 External Term Format

| ndex
An index number. Each fun within a module has an unique index. | ndex is stored in big-endian byte order.
Nunfr ee
The number of free variables.
Modul e
The module that the fun is implemented in, encoded as an atom.
a dl ndex

An integer encoded using SMALL | NTEGER_EXT or | NTEGER _EXT. Is typically a small index into the
module's fun table.

a duni q

Aninteger encoded using SMALL_| NTEGER _EXT or | NTEGER _EXT. Uni q isthe hash value of the parse tree
for the fun.

Pid
A processidentifier asin Pl D_EXT. Represents the process in which the fun was created.
Free vars

Nuntr ee number of terms, each one encoded according to its type.

1.12.27 EXPORT_EXT

1 N1 N2 N3

113 Modul e Functi on Arity

Table 12.34: EXPORT_EXT

Thisterm isthe encoding for external funs: f un M F/ A.
Modul e and Funct i on are encoded as atoms.
Arity isaninteger encoded using SMALL_| NTEGER_EXT.

1.12.28 BIT_BINARY_EXT

1 4 1 Len

77 Len Bits Dat a

Table 12.35: BIT_BINARY_EXT

Thisterm represents a bitstring whose length in bits does not have to be amultiple of 8. The Len field isan unsigned
4 byte integer (big-endian). The Bi t s field is the number of bits (1-8) that are used in the last byte in the data field,
counting from the most significant bit to the least significant.

92 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 External Term Format

1.12.29 NEW_FLOAT EXT

1 8

70 | EEE f1 oat

Table 12.36: NEW_FLOAT_EXT

A finitefloat (i.e. not inf, -inf or NaN) is stored as 8 bytesin big-endian IEEE format.
Thisterm isused in minor version 1 of the external format.

1.12.30 ATOM_UTF8_EXT

1 2 Len

118 Len At omNane

Table 12.37: ATOM_UTF8_EXT

An atomisstored with a2 byte unsigned length in big-endian order, followed by Len bytes containing the At ormNane
encoded in UTF-8.

For more information, see the section on encoding atoms in the beginning of this page.

1.12.31 SMALL ATOM_UTF8_EXT

1 1 Len

119 Len At omNane

Table 12.38: SMALL_ATOM_UTF8_EXT

An atomisstored with al byte unsigned length, followed by Len bytes containing the At omNane encoded in UTF-8.
Longer atoms encoded in UTF-8 can be represented using ATOM _UTF8_EXT.

For more information, see the section on encoding atoms in the beginning of this page.

1.12.32 ATOM_EXT (deprecated)

1 2 Len

100 Len At omNane

Table 12.39: ATOM_EXT

An atom is stored with a 2 byte unsigned length in big-endian order, followed by Len numbers of 8-bit Latin-1
characters that forms the At oniName. The maximum allowed value for Len is 255.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 93

1.13 Distribution Protocol

1.12.33 SMALL ATOM_EXT (deprecated)

1 1 Len

115 Len At omName

Table 12.40: SMALL_ATOM_EXT

An atom is stored with a 1 byte unsigned length, followed by Len numbers of 8-bit Latin-1 characters that forms
the At omNanre.

SMALL_ATOM EXT was introduced in ERTS 5.7.2 and require an exchange of distribution flag
DFLAG _SMALL_ATOM TAGS in the distribution handshake.

1.13 Distribution Protocol

Thisdescription isfar from complete. It will be updated if the protocol is updated. However, the protocols, both from
Erlang nodes to the Erlang Port Mapper Daemon (EPM D) and between Erlang nodes are stable since many years.

The distribution protocol can be divided into four parts:

e Low-level socket connection (1)

» Handshake, interchange node name, and authenticate (2)
e Authentication (doneby net _kernel (3)) (3)

* Connected (4)

A node fetches the port number of another node through the EPMD (at the other host) to initiate a connection request.

For each host, where a distributed Erlang node is running, also an EPMD is to be running. The EPMD can be started
explicitly or automatically as aresult of the Erlang node startup.

By default the EPMD listens on port 4369.

(3) and (4) above are performed at the samelevel but thenet _ker nel disconnectsthe other nodeif it communicates
using an invalid cookie (after 1 second).

Theintegersin al multibyte fields are in big-endian order.

The Erlang Distribution protocol is not by itself secure and does not aim to be so. In order to get secure distribution
the distributed nodes should be configured to use distribution over tls. See the Using SSL for Erlang Distribution
User's Guide for details on how to setup a secure distributed node.

1.13.1 EPMD Protocol
The reguests served by the EPMD are summarized in the following figure.

94 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.13 Distribution Protocol

Client Cor Nodel EPMD
ALIVEZ_REQ h‘
ALIVEZ_X_RESP
.‘ ..
ALIVE_CLOSE_REQ P’
PORT_PLEASEZ_RED h‘
PORTZ_RESF
.‘ ..
NAMES_REQ P’
NAMES_RESE
‘ ..
OUMP _REQ "
OUMP_RESP
‘ __
KILL_RE(h
KILL_RESP
‘ ..
STOP_REQ P’
STOP_Ok_RESP
‘ __
STOP_MNOTOK_RESP
‘ ..

Figure 13.1: Summary of EPMD Requests

Each request * _REQis preceded by a 2 byte length field. Thus, the overall request format is as follows:

2 n

Lengt h Request

Table 13.1: Request Format

Register a Node in EPMD

When adistributed node is started it registersitself in the EPMD. The message ALI VE2 _REQdescribed below is sent
from the node to the EPMD. The response from the EPMD isALI VE2_X RESP (or ALl VE2_RESP).

1 2 1 1 2 2 2 Nlen 2 Elen

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 95

1.13 Distribution Protocol

120 Port No NodeTypePr ot oldiogIﬂeSt V&m}iesm Ver si oMl en NodeNamg El en Extra

Table 13.2: ALIVE2_REQ (120)

Por t No
The port number on which the node accept connection requests.
NodeType
77 = normal Erlang node, 72 = hidden node (C-node), ...
Pr ot ocol
0=TCP/IPv4, ...
H ghest Ver si on

The highest distribution protocol version this node can handle. The valuein OTP 23 and later is 6. Older nodes
only support version 5.

Lowest Ver si on

Thelowest distribution version that this node can handle. Should be 5 to support connections to nodes older than
OTP 23.

Nl en
The length (in bytes) of field NodeNane.
NodeNane
The node name as an UTF-8 encoded string of NI en bytes.
El en
The length of field Ext r a.
Extra
Extrafield of El en bytes.

The connection created to the EPMD must be kept as long as the node is a distributed node. When the connection is
closed, the node is automatically unregistered from the EPMD.

The response message is either ALI VE2_X_RESP or ALI VE2_RESP depending on distribution version. If both
the node and EPMD support distribution version 6 then the response is ALI VE2_X_RESP otherwise it is the older
ALl VE2_RESP:

1 1 4

118 Resul t Creation

Table 13.3: ALIVE2_X_RESP (118) with 32 bit creation

1 1 2

121 Resul t Creation

Table 13.4: ALIVE2_RESP (121) with 16-bit creation

96 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.13 Distribution Protocol

Result = 0 -> ok, result > 0 -> error.

Unregister a Node from EPMD

A node unregisters itself from the EPMD by closing the TCP connection to EPMD established when the node was
registered.

Get the Distribution Port of Another Node

When one node wants to connect to another node it starts with a PORT_PLEASE2_ _REQrequest to the EPMD on the
host where the node resides to get the distribution port that the node listens to.

1 N

122 NodeNane

Table 13.5: PORT_PLEASE2_REQ (122)

whereN =Length - 1.

1 1

119 Resul t

Table 13.6: PORT2_RESP (119) Response Indicating Error, Result > 0

or

1 1 2 1 1 2 2 2 Nlen 2 Elen

119 |Result PortNo\IodeTypTrotbit:gTest\lar\aristr}\/ers ddl en NodeNang Elen |>Extra

Table 13.7: PORT2_RESP, Result = 0

If Resul t >0, the packet only consistsof [119, Resul t].
The EPMD closes the socket when it has sent the information.

Get All Registered Names from EPMD

Thisrequest is used through the Erlang function net _adm nanes/ 1, 2. A TCP connection is opened to the EPMD
and this request is sent.

110

Table 13.8: NAMES_REQ (110)

Theresponse for aNAMVES REQis asfollows:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 97

1.13 Distribution Protocol

4

EPNMDPor t No Nodel nf o*

Table 13.9: NAMES_RESP

Nodel nf o isastring written for each active node. When all Nodel nf o has been written the connection is closed
by the EPMD.

Nodel nf o is, as expressed in Erlang:

io:format("name ~ts at port ~p~n", [NodeName, Port]).

Dump All Data from EPMD
Thisrequest is not really used, it isto be regarded as a debug feature.

1
100
Table 13.10: DUMP_REQ
The response for a DUMP_REQis as follows:
4
EPMDPor t No Nodel nf o*

Table 13.11: DUMP_RESP

Nodel nf o isastring written for each node kept in the EPMD. When al Nodel nf o has been written the connection
is closed by the EPMD.

Nodel nf o is, asexpressed in Erlang:

io:format("active name ~ts at port ~p, fd = ~p~n",
[NodeName, Port, Fd]).
or
io:format("old/unused name ~ts at port ~p, fd = ~p ~n",

[NodeName, Port, Fd]).

Kill EPMD
This request kills the running EPMD. It is almost never used.

107

Table 13.12: KILL_REQ

98 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.13 Distribution Protocol

Theresponsefor aKl LL_REQisasfollows:

2
OKString
Table 13.13: KILL_RESP
where OKSt ri ng is"OK".
STOP_REQ (Not Used)
1 n
115 NodeNane
Table 13.14: STOP_REQ
wheren=Lengt h - 1.
The response for a STOP_REQis asfollows:
7
OKString
Table 13.15: STOP_RESP
where CKSt r i ng is"STOPPED".
A negative response can look as follows:
.
NOKSt ri ng

Table 13.16: STOP_NOTOK_RESP

where NOKSt ri ng is"NOEXIST".

1.13.2 Distribution Handshake

This section describes the distribution handshake protocol used between nodes to establishing a connection. The
protocol was introduced in Erlang/OTP R6 and has remained unchanged until OTP 23. The changes madein OTP 23
were designed to be compatible with the older protocol version. That is an old node can still connect toward a new

node and vice versa.

General

The TCP/IP distribution uses a handshake that expects a connection-based protocol, that is, the protocol does not
include any authentication after the handshake procedure.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 99

1.13 Distribution Protocol

This is not entirely safe, as it is vulnerable against takeover attacks, but it is a tradeoff between fair safety and
performance.

The cookies are never sent in cleartext and the handshake procedure expects the client (called A) to be the first one
to prove that it can generate a sufficient digest. The digest is generated with the MD5 message digest algorithm and
the challenges are expected to be random numbers.

Definitions

A challenge is a 32-hit integer in big-endian order. Below the function gen_chal | enge() returns a random 32-
bit integer used as a challenge.

A digest isa (16 bytes) MD5 hash of the challenge (astext) concatenated with the cookie (as text). Below, the function
gen_di gest (Chal | enge, Cooki e) generatesadigest as described above.

Anout _cooki e isthe cookie used in outgoing communication to a certain node, so that Asout _cooki e for Bis
to correspond with B'si n_cooki e for A and conversely. A'sout _cooki e for Band Asi n_cooki e for B need
not be the same. Below the function out _cooki e(Node) returnsthe current node'sout _cooki e for Node.

An i n_cooki e is the cookie expected to be used by another node when communicating with us, so that A's
i n_cooki e for B corresponds with B'sout _cooki e for A. Below the functioni n_cooki e(Node) returnsthe
current node'si n_cooki e for Node.

The cookies are text strings that can be viewed as passwords.

Every message in the handshake starts with a 16-bit big-endian integer, which contains the message length (not
counting the two initial bytes). In Erlang this corresponds to option { packet, 2} ingen_t cp(3). Notice that
after the handshake, the distribution switchesto 4 byte packet headers.

The Handshake in Detail
Imagine two nodes, A that initiates the handshake and B that accepts the connection.
1) connect/accept
A connects to B through TCP/IP and B accepts the connection.
2) send_nane/r ecei ve_nane

A sends an initial identification to B, which receives the message. The message can have two different formats
which looks as follows (the packet headers are removed):

1 2 4 Nlen

Ver si on=5 Fl ags Nare

Table .17: Old send_name ('n') for protocol version 5

1 8 4 2 Nlen

"N Fl ags Creation Nl en Nare

Table .18: New send_name ('N') for protocol version 6

The old send_nane format is sent from nodes only supporting version 5 or to nodes that might only support
version 5. The Ver si on isa16-hit big endian integer and must always have the value 5, even if node A supports
version 6. Fl ags arethe capability flags of node Ain 32-bit big endian. The flag bit DFLAG_HANDSHAKE 23

100 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.13 Distribution Protocol

should be set if node A supports version 6. Nane is the full node name of A, as a string of bytes (the packet
length denotes how long it is).

Thenew send_nane isonly sent from nodes supporting version 6 to nodes known to support version 6. Fl ags
are the capability flags of node A in 64-bit big endian. The flag bit DFLAG_HANDSHAKE 23 must aways be
set. Cr eat i on isthe node incarnation identifier used by node A to create its pids, ports and references. Nane
is the full node name of A, as a string of bytes. Nl en is the byte length of the node name in 16-bit big endian.
Any extra data after the node Nane must be accepted and ignored.

3)recv_st at us/send_st at us
B sends a status message to A, which indicates if the connection is allowed.

1 Slen

St at us

Table .19: The format of the status message

'S is the message tag. St at us is the status code as a string (not null terminated). The following status codes
are defined:

ok
The handshake will continue.
ok _si mul t aneous

The handshake will continue, but A isinformed that B has another ongoing connection attempt that will be
shut down (simultaneous connect where A's name is greater than B's name, compared literaly).

nok

The handshake will not continue, as B already has an ongoing handshake, which it itself has initiated
(simultaneous connect where B's name is greater than A's).

not _al | owed
The connection is disallowed for some (unspecified) security reason.
alive

A connection to the node is aready active, which either means that node A is confused or that the TCP
connection breakdown of a previous node with this name has not yet reached node B. See step 3B below.

naned:

The handshake willl continue, but A reguested a dynamic node name by setting flag DFLAG_NANME_ME.
The dynamic node name of Aissupplied at the end of the status message from B.

1 Slen=6 2 Nlen

s' St at us=' naned: " N en Nane

Table .20: The format of the 'named:' status message

Nane isthe full dynamic node name of A, asastring of bytes. Nl en isthe byte length of the node namein 16-
bit big endian. Any extra data after the node Nanme must be accepted and ignored.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 101

1.13 Distribution Protocol

3B) send_st at us/recv_st at us

If status was al i ve, node A answers with another status message containing either t r ue, which means that
the connection is to continue (the old connection from this node is broken), or f al se, which means that the
connection is to be closed (the connection attempt was a mistake.

4)recv_chal | enge/send_chal | enge

If the status was ok or ok_si rmul t aneous, the handshake continues with B sending A another message, the
challenge. The challenge contains the same type of information asthe "name" message initially sent from Ato B,
plus a 32-hit challenge. The challenge message can have two different formats:

1 2 4 4 Nlen

Ver si on=5 Fl ags Chal | enge Narme

Table .21: The old challenge message format (version 5)

1 8 4 4 2 Nlen

"N Fl ags Chal | enge Creation Nl en Nare

Table .22: The new challenge message format (version 6)

Theold challenge messageis sent from old B nodes (supporting only version 5) or if node A had not capability flag
DFLAG _HANDSHAKE 23 set. The Ver si on isa16-hit big endian integer and nust aways have the value 5.

The new challenge message is sent from new B nodes if node A had capability flag DFLAG_HANDSHAKE 23
set. Any extra data after the node Nane must be accepted and ignored.

Chal | enge is a 32-hit big-endian integer. The other fields are node B's flags, creation and full node name,
similar tothesend_nane message.

4B) send_conpl enent /r ecv_conpl enent

The complement message, from A to B, is only sent if node A initially sent an old name message and received
back a new challenge message from node B. It contains complementary information missing in the initial old
name message from node A.

1 4 4

Fl agsHi gh Creation

Table .23: The complement message

Fl agsH gh are the high capability flags (bit 33-64) of node A as a 32-bit big endian integer. Cr eati on is
the incarnation identifier of node A.

5)send_chal | enge_repl y/recv_chal | enge_reply
Now A has generated a digest and its own challenge. Those are sent together in a package to B:

1 4 16

102 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.13 Distribution Protocol

Chal | enge Di gest

Table .24: The challenge_reply message

Chal | enge isA'schallengefor B to handle. Di gest isthe MD5 digest that A constructed from the challenge
B sent in the previous step.

6) recv_chal | enge_ack/send_chal | enge_ack

B checks that the digest received from A is correct and generates a digest from the challenge received from A.
Thedigest isthen sent to A. The message is asfollows:

a Di gest

Table .25: The challenge_ack message

Di gest isthedigest calculated by B for A's challenge.
7) check
A checks the digest from B and the connection is up.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 103

1.13 Distribution Protocol

Semigraphic View

A (initiator) B (acceptor)
TCP connect ----------------------~----- - >
TCP accept
send Name ------------moo oo >
recv_name
e T send status

recv_status
(if status was 'alive'

send status - - - - - - - - - - - - - - - - - - >
recv_status)
(ChB) ChB = gen challenge()
e T send challenge

recv_challenge

(if old send name and new recv_challenge

send complement - - - - - - - - - - - - - - - - >
recv_complement)
ChA = gen challenge(),
0CA = out cookie(B),
DiA = gen digest(ChB, 0CA)
(ChA, DiA)
send challenge reply ----------cmmmmmmmmonun >
recv_challenge reply
ICB = in cookie(A),
check:
DiA == gen digest (ChB, ICB)?
- if OK:
0CB = out cookie(A),
DiB = gen digest (ChA, 0CB)
(DiB)
e R T send challenge ack
recv_challenge ack DONE
ICA = in _cookie(B), - else:
check: CLOSE
DiB == gen digest(ChA, ICA)?
- if OK:
DONE
- else:
CLOSE

Distribution Flags

Early in the distribution handshake the two participating nodes exchange capability flags. This is done in order to
determine how the communication between the two nodes should be performed. The intersection of the capabilities
presented by the two nodes defines the capabilities that will be used. The following capability flags are defined:

- def i ne(DFLAG _PUBLI SHED, 16#1) .

The node isto be published and part of the global namespace.
- def i ne(DFLAG_ATOM CACHE, 16#2).

The node implements an atom cache (obsol ete).

104 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.13 Distribution Protocol

- def i ne(DFLAG_EXTENDED REFERENCES, 16#4) .

The node implements extended (3 x 32 bits) references. This flag is mandatory. If not present, the connection
isrefused.

-defi ne(DFLAG DI ST_MONI TOR, 16#8) .
The node implements distributed process monitoring.
- defi ne(DFLAG_FUN_TAGS, 16#10).
The node uses separate tag for funs (lambdas) in the distribution protocol.

Thisflag will become mandatory in OTP 25.

- defi ne(DFLAG_DI ST_MONI TOR_NAME, 16#20) .
The node implements distributed named process monitoring.
- def i ne(DFLAG_HI DDEN_ATOM CACHE, 16#40) .
The (hidden) node implements atom cache (obsol ete).
- defi ne(DFLAG_NEW FUN_TAGS, 16#80) .
The node understands the NEW FUN_EXT tag. Thisflag is mandatory. If not present, the connection is refused.
- def i ne(DFLAG_EXTENDED_PI DS_PORTS, 16#100) .
The node can handle extended pids and ports. Thisflag is mandatory. If not present, the connection is refused.
- defi ne(DFLAG_EXPORT_PTR_TAG 16#200).
The node understands the EXPORT_EXT tag.

This flag will become mandatory in OTP 25.

- defi ne(DFLAG_BI T_BI NARI ES, 16#400) .
The node understands the Bl T_BI NARY_EXT tag.

This flag will become mandatory in OTP 25.

- defi ne(DFLAG_NEW FLQOATS, 16#800) .
The node understands the NEW FLOAT _EXT tag.

Thisflag will become mandatory in OTP 25.

- def i ne(DFLAG_UNI CODE_| O, 16#1000) .
- def i ne(DFLAG DI ST_HDR_ATOM CACHE, 16#2000) .

The node implements atom cache in distribution header.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 105

1.13 Distribution Protocol

- defi ne(DFLAG SMALL_ATOM TAGS, 16#4000) .
The node understands the SMALL_ ATOM_EXT tag.
- defi ne(DFLAG _UTF8_ATOMS, 16#10000).

The node understands UTF-8 atoms encoded with ATOM _UTF8 EXT and SMALL ATOM UTF8_ EXT. Thisflag
is mandatory. If not present, the connection is refused.

-defi ne(DFLAG_MAP_TAG, 16#20000) .
The node understands the map tag MAP_EXT.

| This flag will become mandatory in OTP 25. |

-def i ne(DFLAG_BI G_CREATI ON, 16#40000) .

The node understands big node creation tags NEW PID EXT, NEWPORT_EXT and
NEWER_REFERENCE _EXT. Thisflag is mandatory. If not present, the connection is refused.

- def i ne(DFLAG_SEND_SENDER, 16#80000) .

Use the SEND_SENDER control message instead of the SEND control message and use the SEND_SENDER_TT
control message instead of the SEND_TT control message.

- def i ne(DFLAG_BI G_SEQTRACE_LABELS, 16#100000) .
The node understands any term as the seqtrace label.
- defi ne(DFLAG_EXI T_PAYLOAD, 16#400000).

Use the PAYLOAD EXI T, PAYLOAD EXIT_TT, PAYLOAD EXI T2, PAYLOAD EXIT2_TT and
PAYLOAD MONI TOR_P_EXI T control messages instead of the non-PAYLOAD variants.

- def i ne(DFLAG_FRAGVENTS, 16#800000) .

Use fragmented distribution messages to send large messages.
- def i ne(DFLAG_HANDSHAKE_ 23, 16#1000000) .

The node supports the new connection setup handshake (version 6) introduced in OTP 23.
-defi ne(DFLAG_UNLI NK_I D, 16#2000000) .

Use the new link protocal.

This flag will become mandatory in OTP 26.

Unless both nodes have set the DFLAG_UNLI NK_| Dflag, the old link protocol will be used as a fallback.
- defi ne(DFLAG_SPAWN, (1 bsl 32)).

Set if the SPAWN_REQUEST, SPAVWN_REQUEST_TT, SPAWN_REPLY, SPAWN_REPLY_TT control messages
are supported.

-define(DFLAG NAME_ME, (1 bsl 33)).

Dynamic node name. Thisis not a capability but rather used as a request from the connecting node to receive its
node name from the accepting node as part of the handshake.

106 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.13 Distribution Protocol

-define(DFLAG VA4_NC, (1 bsl 34)).

The node accepts alarger amount of datain pids, ports and references (node container typesversion 4). In the pid
case full 32-bit | Dand Seri al fieldsin NEW Pl D_EXT, in the port case a 64-bit integer in V4_PORT_EXT,
and in the reference case up to 5 32-bit ID words are now accepted in NEWER_REFERENCE _EXT. Introduced
in OTP 24.

| Thisflag will become mandatory in OTP 26. |

-define(DFLAG ALIAS, (1 bsl 35)).

The node supports process aias and can by this handle the ALI AS _SEND and ALI AS _SEND TT control
messages. Introduced in OTP 24.

There is aso function di st_util:strict_order_flags/0 returning all flags (bitwise or:ed together)
corresponding to features that require strict ordering of data over distribution channels.
1.13.3 Protocol between Connected Nodes

SinceERTS5.7.2 (OTP R13B) the runtime system passes adistribution flag in the handshake stage that enablesthe use
of adistribution header on all messages passed. M essages passed between nodes havein this case the following format:

4 d n m

Length Di stributi onHeader Cont r ol Message Message

Table 13.26: Format of Messages Passed between Nodes (as from ERTS 5.7.2 (OTP R13B))

Length
Equal tod+n+m.
Di stri buti onHeader
Distribution header describing the atom cache and fragmented distribution messages.
Cont r ol Message
A tuple passed using the external format of Erlang.
Message

The message sent to another node using the '!" or the reason for a EXIT, EXIT2 or DOWN signal using the
external term format.

Notice that the version number is omitted from the terms that follow a distribution header .

Nodes with an ERTS version earlier than 5.7.2 (OTP R13B) does not pass the distribution flag that enables the
distribution header. Messages passed between nodes have in this case the following format:

4 1 n m

Length Type Cont r ol Message Message

Table 13.27: Format of Messages Passed between Nodes (before ERTS 5.7.2 (OTP R13B))

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 107

1.13 Distribution Protocol

Length
Equal to1+n+m.
Type
Equal to 112 (pass through).
Cont r ol Message
A tuple passed using the external format of Erlang.
Message

The message sent to another node using the "' (in external format). Notice that Message is only passed in
combination with aCont r ol Message encoding asend ('!").

The Cont r ol Message isatuple, where the first element indicates which distributed operation it encodes:
LI NK

{1, FronPid, ToPid}

Thissignal issent by Fr onPi d in order to create alink between Fr onPi d and ToPi d.
SEND

{2, Unused, ToPi d}

Followed by Message.

Unused iskept for backward compatibility.
EXIT

{3, FronPid, ToPid, Reason}

Thissignal is sent when alink has been broken
UNLI NK (deprecated)

{4, FronPid, ToPid}

This signal is sent by Fr onPi d in order to remove alink between Fr onPi d and ToPi d, when using the old
link protocoal.

This signal has been deprecated and will not be supported in OTP 26. For more information see the
documentation of the new link protocol.

NODE_LI NK
{5}
REG_SEND
{6, FronPid, Unused, ToNane}
Followed by Message.
Unused iskept for backward compatibility.
GROUP_LEADER
{7, FronPid, ToPid}

108 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.13 Distribution Protocol

EXI T2

{8, FronPid, ToPid, Reason}

Thissignal is sent by acall to the erlang:exit/2 bif
SEND_TT

{12, Unused, ToPid, TraceToken}

Followed by Message.

Unused iskept for backward compatibility.
EXIT_TT

{13, FronPid, ToPid, TraceToken, Reason}
REG SEND_TT

{16, FronPid, Unused, ToNane, TraceToken}

Followed by Message.

Unused iskept for backward compatibility.
EXIT2_TT

{18, FronPid, ToPid, TraceToken, Reason}
MONI TOR_P

{19, FronPid, ToProc, Ref},whereFronPi d=monitoring processand ToPr oc = monitored process
pid or name (atom)

DEMONI TOR_P

{20, FronPid, ToProc, Ref},whereFronPi d=monitoring processand ToPr oc = monitored process
pid or name (atom)

Weinclude Fr onPi d just in case we want to trace this.
MONI TOR_P_EXI' T

{21, FronProc, ToPid, Ref, Reason},whereFronProc =monitored processpid or name (atom),
ToPi d = monitoring process, and Reason = exit reason for the monitored process

New Ctrimessages for Erlang/OTP 21
SEND_SENDER

{22, FronPid, ToPid}
Followed by Message.

This control message replaces the SEND control message and will be sent when the distribution flag
DFLAG_SEND_SENDER has been negotiated in the connection setup handshake.

M essages encoded before the connection has been set up may still use the SEND control message. However,
once a SEND_SENDER or SEND_SENDER_TT control message has been sent, no more SEND control
messages will be sent in the same direction on the connection.

SEND_SENDER_TT
{23, FronPid, ToPid, TraceToken}

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 109

1.13 Distribution Protocol

Followed by Message.

This control message replaces the SEND _TT control message and will be sent when the distribution flag
DFLAG_SEND_SENDER has been negotiated in the connection setup handshake.

Note:

Messages encoded before the connection has been set up may still use the SEND_TT control message.
However, once a SEND_SENDER or SEND_SENDER_TT control message has been sent, nomore SEND_TT
control messages will be sent in the same direction on the connection.

New Ctrimessages for Erlang/OTP 22

M essages encoded before the connection has been set up may still use the non-PAY LOAD variant. However, once
aPAYLOAD control message has been sent, no more non-PAYLOAD control messages will be sent in the same
direction on the connection.

PAYLOAD EXI T
{24, FronPid, ToPid}
Followed by Reason.

This control message replaces the EXI T control message and will be sent when the distribution flag
DFLAG_EXI T_PAYLQOAD has been negotiated in the connection setup handshake.

PAYLOAD EXIT_TT
{25, FronPid, ToPid}
Followed by Reason.

This control message replaces the EXI T_TT control message and will be sent when the distribution flag
DFLAG_EXI T_PAYLQAD has been negotiated in the connection setup handshake.

PAYLOAD_EXI T2
{26, FronPid, ToPid}
Followed by Reason.

This control message replaces the EXI T2 control message and will be sent when the distribution flag
DFLAG_EXI T_PAYLQAD has been negotiated in the connection setup handshake.

PAYLOAD EXI T2_TT
{27, FronPid, ToPid}
Followed by Reason.

This control message replaces the EXI T2_TT control message and will be sent when the distribution flag
DFLAG_EXI T_PAYLQAD has been negotiated in the connection setup handshake.

PAYLOAD MONI TOR_P_EXIT
{28, FronPid, ToPid, Ref}
Followed by Reason.

This control message replaces the MONI TOR_P_EXI T control message and will be sent when the distribution
flag DFLAG_EXI T_PAYLQOAD has been negotiated in the connection setup handshake.

110 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.13 Distribution Protocol

New Ctrimessages for Erlang/OTP 23
SPAVWN_REQUEST
{29, Reqld, From G ouplLeader, {Mdule, Function, Arity}, OptlList}
Followed by Ar gLi st .
Thissignal is sent by thespawn_r equest () BIF.
Reqld :: reference()
Request identifier. Also used as monitor reference in case the noni t or option has been passed.
From:: pid()
Process identifier of the process making the request. That is, the parent processto be.
G oupLeader :: pid()
Processidentifier of the group leader of the newly created process.
{Modul e :: atom(), Function :: atom(), Arity :: integer() >= 0}
Entry point for the the new process.
OptList :: [term()]
A proper list of spawn options to use when spawning.
ArgList :: [term()]
A proper list of arguments to usein the call to the entry point.
Only supported when the DFLAG_SPAWN distribution flag has been passed.
SPAWN_ REQUEST TT
{30, Reqld, From G oupLeader, {Mdule, Function, Arity}, OptlList, Token}
Followed by Ar gLi st .
Same as SPAVN_REQUEST, but also with a sequential trace Token.
Only supported when the DFLAG_SPAWN distribution flag has been passed.
SPAWN_REPLY
{31, Reqld, To, Flags, Result}
Thissignal issent asareply to aprocess previously sending a SPAVWN_REQUEST signal.
Reqld :: reference()
Request identifier. Also used as monitor reference in case the noni t or option has been passed.
To :: pid()

Process identifier of the process making the spawn request.

Flags :: integer() >= 0
A bit flag field of bit flags bitwise or:ed together. Currently the following flags are defined:
1
A link between To and Resul t was set up on the node where Resul t resides.
2

A monitor from To to Resul t was set up on the node where Resul t resides.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 111

1.13 Distribution Protocol

Result :: pid() | atom()

Result of the operation. If Resul t isaprocessidentifier, the operation succeeded and the process identifier
is the identifier of the newly created process. If Resul t is an atom, the operation failed and the atom
identifies failure reason.

Only supported when the DFLAG_SPAWN distribution flag has been passed.
SPAWN_REPLY_TT

{32, Reqgld, To, Flags, Result, Token}

Same as SPAVN_REPLY, but also with a sequential trace Token.

Only supported when the DFLAG_SPAWN distribution flag has been passed.
UNLI NK_I D

{35, Id, FronPid, ToPid}

This signal is sent by Fr onPi d in order to remove a link between Fr onPi d and ToPi d. This unlink signal
replaces the UNLI NK signal. Besides process identifiers of the sender and receiver the UNLI NK_| D signal also
contains an integer identifier 1 d. Validrangeof 1 dis[1, (1 bsl 64) - 1].Id isto be passed back to
the sender by the receiver in an UNLI NK_| D_ACK signal. | d must uniquely identify the UNLI NK_| D signal
among all not yet acknowledged UNLI NK_| D signals from Fr onPi d to ToPi d.

This signal is only passed when the new link protocol has been negotiated using the DFLAG _UNLI NK_| D
distribution flag.

UNLI NK_I D_ACK
{36, Id, FromPid, ToPid}

An unlink acknowledgement signal. This signal is sent as an acknowledgement of the reception of an
UNLI NK_| Dsignal. The | d element should be the same | d as present in the UNLI NK_I D signal. Fr onPi d
identifiesthe sender of the UNLI NK_| D_ACK signal and ToPi d identifiesthe sender of the UNLI NK_| Dsignal.

This signal is only passed when the new link protocol has been negotiated using the DFLAG_UNLI NK_I D
distribution flag.

New Ctrimessages for Erlang/OTP 24
ALl AS_SEND

{33, FronPid, Alias}
Followed by Message.

This control message is used when sending the message Message to the process identified by the process dlias
Al i as. Nodesthat can handle this control message sets the distribution flag DFLAG_ALI AS in the connection
setup handshake.

ALI AS_SEND_TT
{34, FronPid, Alias, Token}
Followed by Message.
SameasALI AS_SEND, but also with a sequential trace Token.

Link Protocol
New Link Protocol

The new link protocol will be used when both nodes flag that they understand it using the DFLAG_UNLI NK_I D
distribution flag. If one of the nodes does not understand the new link protocol, the old link protocol will be used
as afallback.

112 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.13 Distribution Protocol

The new link protocol introduces two new signals, UNLI NK_I D and UNLI NK_I D_ACK, which replace the old
UNLI NK signal. Theold LI NK signal is still sent in order to set up alink, but handled differently upon reception.

In order to set up alink, aLl NK signa is sent, from the process initiating the operation, to the process that it wants
to link to. In order to remove alink, an UNLI NK_I D signal is sent, from the process initiating the operation, to the
linked process. The receiver of an UNLI NK_I D signal responds with an UNLI NK_| D_ACK signal. Upon reception
of an UNLI NK_I D signal, the corresponding UNLI NK_| D_ACK signal must be sent before any other signals are
sent to the sender of the UNLI NK I D signal. Together with the signal ordering guarantee of Erlang this makes it
possiblefor the sender of the UNLI NK_I Dsignal to know the order of other signalswhichisessential for the protocol.
The UNLI NK_I D_ACK signal should contain the same | d as the | d contained in the UNLI NK_I D signa being
acknowledged.

Processes also need to maintain process local information about links. The state of this process local information is
changed when the signals above are sent and received. Thisprocesslocal information also determinesif asignal should
be sent when aprocesscalls| i nk/ 1 orunl i nk/ 1. A LI NKsignal is only sent if there does not currently exist an
active link between the processes according to the process local information and an UNLI NK_I D signal is only sent
if there currently exists an active link between the processes according to the process local information.
The process local information about alink contains:
Pid
Process identifier of the linked process.
Active Flag
If set, the link is active and the process will react on incoming exit signals issued due to the link. If not set,
the link isinactive and incoming exit signals, issued due to the link, will beignored. That is, the processes are
considered as not linked.
Unlink Id
Identifier of an outstanding unlink operation. That is, an unlink operation that has not yet been acknowledged.
Thisinformation is only used when the active flag is not set.

A processisonly considered linked to another processif it has processlocal information about the link containing the
processidentifier of the other process and with the active flag set.

The process local information about alink is updated as follows:

A LI NK signal is sent
Link information is created if not already existing. The active flag is set, and unlink id is cleared. That is, if we
had an outstanding unlink operation we will ignore the result of that operation and enable the link.

A LI NK signal isreceived
If no link information already exists, it is created, the active flag is set and unlink id is cleared. If the link
information already exists, the signal is silently ignored, regardless of whether the active flag is set or not. That
is, if we have an outstanding unlink operation we will not activate the link. In this scenario, the sender of the
LI NK signal has not yet sent an UNLI NK_| D_ACK signal corresponding to our UNLI NK_I D signal which
means that it will receive our UNLI NK_| D signal after it sent itsLI NK signal. Thisin turn means that both
processes in the end will agree that there is no link between them.

An UNLI NK_I Dsignal issent
Link information already exists and the active flag is set (otherwise the signal would not be sent). The active
flag is unset, and the unlink id of the signal is saved in the link information.

An UNLI NK_I Dsignal isreceived
If the active flag is set, information about the link is removed. If the active flag is not set (that is, we have an
outstanding unlink operation), the information about the link isleft unchanged.

An UNLI NK_I D_ACK signal is sent
Thisis done when an UNLI NK_I Dsignal is received and causes no further changes of the link information.

An UNLI NK_| D_ACK signal isreceived
If information about the link exists, the active flag is not set, and the unlink id in the link information equals the
I d inthe signal, the link information is removed; otherwise, the signal isignored.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 113

1.13 Distribution Protocol

When a process receives an exit signal due to alink, the process will first react to the exit signal if the link is active
and then remove the process local information about the link.

In casethe connectionislost between two nodes, exit signalswith exitreasonnoconnect i on aresenttoall processes
with links over the connection. This will cause all process local information about links over the connection to be
removed.

Exactly the same link protocol is also used internally on an Erlang node. The signals however have different formats
since they do not have to be sent over the wire.

Old Link Protocol

The old link protocol utilize two signals L1 NK, and UNLI NK. The LI NK signal informs the other process that a link
should be set up, and the UNLI NK signal informs the other process that a link should be removed. This protocol is
however abit too naive. If both processes operate on the link simultaneously, the link may end up in an inconsistent
state where one process thinks it is linked while the other thinksit is not linked.

This protocol is deprecated and support for it will be removed in OTP 26. Until then, it will be used as fallback when
communicating with old nodes that do not understand the new link protocol.

114 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.13 Distribution Protocol

2 Reference Manual

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 115

atomics

atomics

Erlang module

Thismodule providesaset of functionsto do atomic operationstowards mutable atomic variables. Theimplementation
utilizes only atomic hardware instructions without any software level locking, which makes it very efficient for
concurrent access. The atomics are organized into arrays with the following semantics:

e Atomics are 64 bit integers.

« Atomics can be represented as either signed or unsigned.

e Atomicswrap around at overflow and underflow operations.

* All operations guarantee atomicity. No intermediate results can be seen. The result of one mutation can only be
the input to one following mutation.

e All atomic operations are mutually ordered. If atomic B is updated after atomic A, then that is how it will appear
to any concurrent readers. No one can read the new value of B and then read the old value of A.

* Indexesinto atomic arrays are one-based. An atomic array of arity N contains N atomics with index from 1 to N.

Data Types
atomics ref()
I dentifies an atomic array returned from new/ 2.

Exports

new(Arity, Opts) -> atomics ref()

Types:
Arity = integer() >=1
Opts = [Opt]

Opt = {signed, boolean()}
Create anew array of Ari t y number of atomics. All atomicsin the array are initially set to zero.
Argument Opt s isalist of the following possible options:
{signed, bool ean()}
Indicate if the elements of the array will be treated as signed or unsigned integers. Default ist r ue (signed).

Theinteger interval for signed atomicsarefrom- (1 bsl 63) to(1 bsl 63) -1 andfor unsigned atomics
fromOto(1 bsl 64)-1.

Atomicsare not tied to the current process and are automatically garbage collected when they are no longer referenced.

put(Ref, Ix, Value) -> ok
Types:

Ref = atomics ref()

Ix = Value = integer()

Set atomic to Val ue.

get(Ref, Ix) -> integer()
Types:

116 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

atomics

Ref = atomics ref()
Ix = integer()
Read atomic value.

add(Ref, Ix, Incr) -> ok
Types:
Ref = atomics ref()
Ix = Incr = integer()

Add | ncr toatomic.

add get(Ref, Ix, Incr) -> integer()
Types:

Ref = atomics ref()

Ix = Incr = integer()

Atomic addition and return of the result.

sub(Ref, Ix, Decr) -> ok
Types:
Ref = atomics ref()
Ix = Decr = integer()

Subtract Decr from atomic.

sub_get(Ref, Ix, Decr) -> integer()
Types:

Ref = atomics ref()

Ix = Decr = integer()

Atomic subtraction and return of the result.

exchange(Ref, Ix, Desired) -> integer()
Types:

Ref = atomics ref()

Ix = Desired = integer()

Atomically replaces the value of the atomic with Desi r ed and returns the value it held previously.

compare_exchange(Ref, Ix, Expected, Desired) -> ok | integer()
Types:

Ref = atomics ref()

Ix = Expected = Desired = integer()

Atomically compares the atomic with Expect ed, and if those are equal, set atomic to Desi r ed. Returns ok if
Desi r ed was written. Returns the actual atomic valueif not equal to Expect ed.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 117

atomics

info(Ref) -> Info
Types.
Ref = atomics ref()
Info =

#{size := Size, max := Max, min := Min, memory := Memory}

Size = integer() >= 0
Max = Min = integer()
Memory = integer() >= 0

Return information about an atomic array in amap. The map has the following keys:
si ze
The number of atomicsin the array.
nmax
The highest possible value an atomic in this array can hold.
nmn
The lowest possible value an atomic in this array can hold.
nenory
Approximate memory consumption for the array in bytes.

118 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

counters

counters

Erlang module

Thismodul e providesaset of functionsto do operationstowards shared mutable counter variables. Theimplementation
does not utilize any software level locking, which makes it very efficient for concurrent access. The counters are
organized into arrays with the following semantics:

Counters are 64 bit signed integers.

Counters wrap around at overflow and underflow operations.

Counters are initialized to zero.

Write operations guarantee atomicity. No intermediate results can be seen from a single write operation.

Two types of counter arrays can be created with optionsat om cs orwri t e_concurrency. Theat om cs
counters have good allround performance with nice consistent semanticswhilewr i t e _concur r ency counters
offerseven better concurrent write performance at the expense of some potential read inconsistencies. Seenew 2.

Indexes into counter arrays are one-based. A counter array of size N contains N counters with index from 1 to N.

Data Types

counters _ref()

| dentifies a counter array returned from new/ 2.

Exports

new(Size, Opts) -> counters ref()

Types:
Size = integer() >=1
Opts = [Opt]

Opt = atomics | write concurrency

Create anew counter array of Si ze counters. All countersin the array areinitially set to zero.

Argument Opt s isalist of the following possible options:

at omi cs (Default)

Counterswill be sequentially consistent. If write operation A is done sequentially before write operation B, then
aconcurrent reader may see the result of none of them, only A, or both A and B. It cannot see the result of only B.

write_concurrency

Thisis an optimization to achieve very efficient concurrent add and sub operations at the expense of potential
read inconsistency and memory consumption per counter.

Read operations may see sequentially inconsistent results with regard to concurrent write operations. Even if
write operation A is done sequentially before write operation B, a concurrent reader may see any combination
of A and B, including only B. A read operation is only guaranteed to see all writes done sequentially before the
read. No writes are ever lost, but will eventually all be seen.

The typical use case for wri t e_concurrency iswhen concurrent calls to add and sub toward the same
counters are very frequent, while calls to get and put are much less frequent. The lack of absolute read
consistency must also be acceptable.

Countersare not tied to the current process and are automatically garbage collected when they are no longer referenced.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 119

counters

get(Ref, Ix) -> integer()
Types.
Ref = counters ref()
Ix = integer()
Read counter value.

add(Ref, Ix, Incr) -> ok
Types:
Ref = counters ref()
Ix = Incr = integer()

Add | ncr tocounter at index | X.

sub(Ref, Ix, Decr) -> ok
Types:
Ref = counters ref()
Ix = Decr = integer()

Subtract Decr from counter at index | X.

put(Ref, Ix, Value) -> ok
Types:
Ref = counters ref()
Ix = Value = integer()

Write Val ue to counter at index | x.

Despite its name, thewr i t e_concur r ency optimization does not improve put . A call to put isarelatively
heavy operation compared to the very lightweight and scalable add and sub. The cost for a put with
write_concurrency islikeaget plusaput withoutwrite_concurrency.

info(Ref) -> Info

Types.
Ref = counters ref()
Info = #{size := Size, memory := Memory}
Size = Memory = integer() >= 0

Return information about a counter array in a map. The map has the following keys (at least):
si ze

The number of countersin the array.
nenory

Approximate memory consumption for the array in bytes.

120 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

driver_entry

driver_entry
C Library

Usethisfunctionality with extreme care.

A driver callback is executed as a direct extension of the native code of the VM. Execution is not made in a safe
environment. The VM cannot provide the same services as provided when executing Erlang code, such as pre-
emptive scheduling or memory protection. If the driver callback function does not behave well, the whole VM
will mishbehave.

e A driver callback that crash will crash the whole VM.

* An erroneously implemented driver callback can cause aVM internal state inconsistency, which can cause a
crash of the VM, or miscellaneous misbehaviors of the VM at any point after the call to the driver callback.

e A driver calback doing lengthy work before returning degrades responsiveness of the VM, and can cause
miscellaneous strange behaviors. Such strange behaviors include, but are not limited to, extreme memory
usage, and bad load balancing between schedulers. Strange behaviors that can occur because of lengthy work
can also vary between Erlang/OTP rel eases.

As from ERTS 5.9 (Erlang/OTP R15B) the driver interface has been changed with larger types for the callbacks
out put ,control ,andcal | . Seedriver version managementiner | _dri ver.

Old drivers (compiled withaner | _dri ver. h froman ERTSversion earlier than 5.9) must be updated and have
to use the extended interface (with version management).

Thedri ver _entry structureisaC struct that all Erlang drivers define. It contains entry pointsfor the Erlang driver,
which are called by the Erlang emulator when Erlang code accesses the driver.

Theerl _driver driver API functions need a port handle that identifies the driver instance (and the port in the
emulator). Thisis only passed to the st art function, but not to the other functions. The st art function returns a
driver-defined handle that is passed to the other functions. A common practiceisto havethest ar t function allocate
some application-defined structure and stash the por t handleinit, to useit later with the driver API functions.

The driver callback functions are called synchronously from the Erlang emulator. If they take too long before
completing, they can causetime-outsin the emulator. Use the queue or asynchronous callsif necessary, asthe emulator
must be responsive.

The driver structure contains the driver name and some 15 function pointers, which are called at different times by
the emulator.

The only exported function from the driver is dri ver i nit. This function returns the dri ver _entry
structure that points to the other functions in the driver. The dri ver _i ni t function is declared with a macro,
DRI VER | NI T(dri ver nane) . (Thisis because different operating systems have different names for it.)

When writing a driver in C++, the driver entry isto be of " C' linkage. One way to do this is to put the following
line somewhere before the driver entry:

extern "C" DRIVER INIT(drivername);

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 121

driver_entry

When the driver has passed the dri ver _entry over to the emulator, the driver is not allowed to modify the
driver_entry.

If compiling a driver for static inclusion through --enabl e-static-drivers, you must define
STATI C_ERLANG DRI VER beforethe DRI VER_I NI T declaration.

Do not declare the dri ver _entry const. This because the emulator must modify the handl e and the
handl e2 fields. A statically allocated, and const -declared dri ver _entry can be located in read-only
memory, which causes the emulator to crash.

Data Types
Erl DrvEntry

122 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

driver_entry

typedef struct erl drv _entry {
int (*init) (void); /* Called at system startup for statically
linked drivers, and after loading for
dynamically loaded drivers */
#ifndef ERL_SYS DRV
ErlDrvData (*start)(ErlDrvPort port, char *command);
/* Called when open port/2 is invoked,
return value -1 means failure */
#else
ErlDrvData (*start)(ErlDrvPort port, char *command, SysDriverOpts* opts);
/* Special options, only for system driver */
#endif
void (*stop) (ErlDrvData drv_data);
/* Called when port is closed, and when the
emulator is halted */
void (*output) (ErlDrvData drv_data, char *buf, ErlDrvSizeT len);
/* Called when we have output from Erlang to
the port */
void (*ready input) (ErlDrvData drv_data, ErlDrvEvent event);
/* Called when we have input from one of
the driver's handles */
void (*ready output) (ErlDrvData drv_data, ErlDrvEvent event);
/* Called when output is possible to one of
the driver's handles */

char *driver name; /* Name supplied as command in
erlang:open _port/2 */

void (*finish) (void); /* Called before unloading the driver -
dynamic drivers only */

void *handle; /* Reserved, used by emulator internally */

ErlDrvSSizeT (*control) (ErlDrvData drv_data, unsigned int command,
char *buf, ErlDrvSizeT len,
char **rbuf, ErlDrvSizeT rlen);

/* "ioctl" for drivers - invoked by

port control/3 */
void (*timeout) (ErlDrvData drv_data);

/* Handling of time-out in driver */

void (*outputv) (ErlDrvData drv_data, ErlIOVec *ev);

/* Called when we have output from Erlang
to the port */

void (*ready async) (ErlDrvData drv_data, ErlDrvThreadData thread data);
void (*flush)(ErlDrvData drv_data);

/* Called when the port is about to be
closed, and there is data in the
driver queue that must be flushed
before 'stop' can be called */

ErlDrvSSizeT (*call) (ErlDrvData drv_data, unsigned int command,
char *buf, ErlDrvSizeT len,
char **rbuf, ErlDrvSizeT rlen, unsigned int *flags);

/* Works mostly like 'control', a synchronous
call into the driver */

void* unused event callback;

int extended marker; /* ERL_DRV_EXTENDED MARKER */

int major version; /* ERL_DRV_EXTENDED MAJOR VERSION */

int minor version; /* ERL_DRV_EXTENDED MINOR VERSION */

int driver flags; /* ERL_DRV_FLAGs */

void *handle2; /* Reserved, used by emulator internally */

void (*process exit) (ErlDrvData drv_data, ErlDrvMonitor *monitor);
/* Called when a process monitor fires */
void (*stop select) (ErlDrvEvent event, void* reserved);
/* Called to close an event object */
} ErlDrvEntry;

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 123

driver_entry

int (*init)(void)
Called directly after the driver has been loaded by er | _ddl | : | oad_dri ver/ 2 (actualy when the driver is
added to the driver list). The driver isto return O, or, if the driver cannot initialize, - 1.

Erl DrvData (*start)(Erl DrvPort port, char* command)

Called whenthedriver isinstantiated, when er | ang: open_port/ 2 iscaled. Thedriver isto return anumber
>= 0 or apointer, or, if the driver cannot be started, one of three error codes:

ERL_DRV_ERROR GENERAL
General error, no error code
ERL_DRV_ERROR ERRNO
Error with error codeiner r no
ERL_DRV_ERROR BADARG
Error, badar g

If an error code is returned, the port is not started.
void (*stop)(ErlDrvData drv_data)

Called when the port is closed, with er | ang: port _close/1orPort ! {self(), close}.Notice
that terminating the port owner process also closes the port. If dr v_dat a is a pointer to memory allocated in
st art, then st op isthe place to deallocate that memory.

void (*output)(Erl DrvData drv_data, char *buf, ErlDrvSizeT |en)

Called when an Erlang process has sent data to the port. The datais pointed to by buf , and is| en bytes. Data
issenttotheport withPort ! {self(), {command, Data}} orwitherl ang: port_ command/ 2.
Depending on how the port was opened, it is to be either a list of integers 0. .. 255 or a binary. See
erl ang: open_port/2anderl ang: port _command/ 2.

void (*ready_input)(ErlDrvData drv_data, ErlDrvEvent event)
void (*ready_output)(ErlDrvData drv_data, ErlDrvEvent event)

Called when adriver event (specified in parameter event) issignaled. Thisisused to help asynchronous drivers
"wake up" when something occurs.

On Unix theevent isapipe or socket handle (or something that the sel ect system call understands).

On Windowsthe event isan Event or Semaphor e (or something that the Wai t For Mul t i pl eCbj ect s
API function understands). (Some trickery in the emulator allows more than the built-in limit of 64 Event s
to be used.)

To use thiswith threads and asynchronous routines, create a pipe on Unix and an Event on Windows. When the
routine completes, write to the pipe (use Set Event on Windows), this makesthe emulator call r eady _i nput
orready_out put.

Falseeventscanoccur. Thatis, callstor eady_i nput orr eady_out put athoughnoreal eventsaresignaled.
In redlity, it israre (and OS-dependant), but a robust driver must nevertheless be able to handle such cases.

char *driver_name

The driver name. It must correspond to the atom used iner | ang: open_port/ 2, and the name of the driver
library file (without the extension).

voi d (*finish)(void)
Called by theer | _ddl | driver when the driver is unloaded. (It isonly called in dynamic drivers.)
Thedriver isonly unloaded asaresult of callinger | _ddl | : unl oad_dri ver/ 1, or whenthe emulator halts.

124 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

driver_entry

voi d *handl e

Thisfield is reserved for the emulator's internal use. The emulator will modify this field, so it is important that
thedri ver _ent ry isnot declared const .

Erl DrvSSi zeT (*control) (Erl DrvData drv_data, unsigned int conmand, char *buf,
Erl DrvSi zeT len, char **rbuf, ErlDrvSizeT rlen)

A special routineinvoked wither | ang: port _contr ol / 3. It worksalittlelikean "ioctl" for Erlang drivers.
The data specifiedtoport _cont r ol / 3 arrivesinbuf and| en. Thedriver can send data back, using * r buf
andrl en.

Thisisthefastest way of calling adriver and get aresponse. It makes no context switchin the Erlang emulator and
reguires no message passing. It is suitable for calling C function to get faster execution, when Erlang istoo slow.

If the driver wantsto return data, itistoreturnitinr buf . Whencont r ol iscalled, *r buf pointsto a default
buffer of r I en bytes, which can be used to return data. Datais returned differently depending on the port control
flags (thosethat are set wither | _driver:set _port _control fl ags).

If the flag is set to PORT_CONTROL_FLAG BI NARY, a binary is returned. Small binaries can
be returned by writing the raw data into the default buffer. A binary can aso be returned
by setting *rbuf to point to a binary alocated with erl _driver:driver_alloc_binary.
This binary is freed automatically after control has returned. The driver can retain the binary
for read only access with erl _driver:driver_binary inc_refc to be freed later with
erl _driver:driver_free_binary.Itisneveralowedtochangethebinary after cont r ol hasreturned.
If *r buf issetto NULL, an empty list is returned.

If theflag isset to 0, dataisreturned as alist of integers. Either use the default buffer or set * r buf to point to a
larger buffer allocated wither | _dri ver: driver _al | oc. Thebuffer isfreed automatically after cont r ol
has returned.

Using binariesis faster if more than afew bytes are returned.
The return value is the number of bytesreturned in *r buf .
void (*timeout) (Erl DrvData drv_data)

Cdled any time after the driver's timer reaches 0. The timer is activated with
erl _driver:driver_set_timer.Noprioritiesor ordering exist anong drivers, so if severa driverstime
out at the same time, anyone of them is called first.

void (*outputv)(ErlDrvData drv_data, ErllOvec *ev)

Called whenever the port is written to. If it is NULL, the out put function is called instead. This function is
faster than out put , asit takesan Er | | OVec directly, which requires no copying of the data. The port isto be
in binary mode, seeer | ang: open_port/ 2.

Er | 1 Ovec contains both a Sysl OVec, suitable for wri t ev, and one or more binaries. If these binaries
are to be retained when the driver returns from out put v, they can be queued (using, for example,
erl _driver:driver_eng_bi n)or,if they arekept in astatic or global variable, the reference counter can
be incremented.

void (*ready_async) (Erl DrvData drv_data, ErlDrvThreadData thread data)

Called after an asynchronous call has completed. The asynchronous cal is started with
erl _driver:driver_async. Thisfunction is caled from the Erlang emulator thread, as opposed to the
asynchronous function, which is called in some thread (if multi-threading is enabled).

void (*flush)(Erl DrvData drv_data)

Called when the port is about to be closed, and thereis datain the driver queue that must be flushed before 'stop'
can be called.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 125

driver_entry

Erl DrvSSi zeT (*call)(Erl DrvData drv_data, unsigned int conmand, char *buf,
Erl DrvSi zeT len, char **rbuf, ErlDrvSizeT rlen, unsigned int *flags)

Called from er | ang: port _cal | / 3. It works a lot like the cont r ol callback, but uses the external term
format for input and output.

command isan integer, obtained from the call from Erlang (the second argumenttoer | ang: port _cal | / 3).

buf and| en provide the arguments to the call (the third argument to er | ang: port _cal | / 3). They can be
decoded using ei functions.

r buf points to areturn buffer, r | en bytes long. The return data is to be a valid Erlang term in the external
(binary) format. This is converted to an Erlang term and returned by er | ang: port _cal | / 3 to the caler.
If more space than r| en bytes is needed to return data, *r buf can be set to memory alocated with
erl _driver:driver_all oc. Thismemory isfreed automatically after cal | has returned.

The return value is the number of bytes returned in *r buf . If ERL_DRV_ERROR_GENERAL isreturned (or in
fact, anything < 0), er | ang: port _cal | / 3 throwsaBAD ARG

void (*event)(Erl DrvData drv_data, ErlDrvEvent event, Erl DrvEventData
event _dat a)

i nt

Intentionally left undocumented.
ext ended_nar ker

Thisfieldiseither tobeequal to ERL_DRV_EXTENDED MARKERor 0. Anolddriver (not aware of the extended
driver interface) isto set this field to 0. If thisfield is 0, all the following fields must also be 0, or NULL if it
isapointer field.

maj or _version

This field is to equa ERL_DRV_EXTENDED MAJOR_VERSI ON if field ext ended_mar ker equals
ERL_DRV_EXTENDED MARKER

nm nor _versi on

This field is to equal ERL_DRV_EXTENDED M NOR_VERSI ON if field ext ended_nar ker equals
ERL_DRV_EXTENDED MARKER.

driver_flags

This field is used to pass driver capability and other information to the runtime system. If
field ext ended_nmar ker egquals ERL_DRV_EXTENDED MARKER, it is to contain O or driver flags
(ERL_DRV_FLAG *) OR'ed hitwise. The following driver flags exist:

ERL_DRV_FLAG USE_PORT_LOCKI NG

The runtime system uses port-level locking on all ports executing this driver instead of driver-level locking.
For more information, seeer | _dri ver.

ERL_DRV_FLAG SOFT_BUSY

Marks that driver instances can handle being called in the out put and/or out put v callbacks athough
adriver instance has marked itself asbusy (seeer | _dri ver: set _busy_port). Asfrom ERTS5.7.4
this flag is required for drivers used by the Erlang distribution (the behavior has always been required by
drivers used by the distribution).

ERL_DRV_FLAG_NO BUSY_MSGQ

Disables busy port message queue functionality. For more information, see
erl _driver:erl _drv_busy nmsgq limts.

126 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

driver_entry

ERL_DRV_FLAG USE_| NI T_ACK

When this flag is specified, the linked-in driver must manually acknowledge that the port has been
successfully startedusinger | _driver:erl _drv_init_ack().Thisalowstheimplementor to make
theer | ang: open_port exit withbadar g after some initial asynchronousinitialization has been done.

voi d *handl e2

Thisfield isreserved for the emulator's internal use. The emulator modifies this field, so it is important that the
driver_entry isnot declared const .

void (*process_exit)(ErlDrvData drv_data, ErlDrvMnitor *nonitor)

Called when a monitored process exits. The dr v_dat a is the data associated with the port for which the
process is monitored (using er | _dri ver: driver _nonitor_process) and the noni t or corresponds
to the Erl DrvMoni t or structure filled in when creating the monitor. The driver interface function
erl _driver:driver_get nonitored process can be used to retrieve the process ID of the exiting
processasan Er | Dr vTer nDat a.

void (*stop_select)(Erl DrvEvent event, void* reserved)
Called on behalf of er | _dri ver: driver_sel ect whenitissafeto close an event object.
A typical implementation on Unix istodo cl ose((i nt)event).
Argument r eser ved isintended for future use and isto be ignored.

In contrast to most of the other callback functions, st op_sel ect is called independent of any port. No
Er | Dr vDat a argument is passed to the function. No driver lock or port lock is guaranteed to be held. The port
that called dri ver _sel ect can even be closed at the time st op_sel ect iscaled. But it can also be the
casethat st op_sel ect iscaleddirectly by er| _driver:driver_sel ect.

It is not allowed to call any functionsin the driver APl from st op_sel ect . This strict limitation is because
the volatile context that st op_sel ect can be called.

See Also
erl _driver(3),erlang(3),erl_ddlI(3)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 127

epmd

epmd

Command

epmd [-d|-debug] [DbgExtra...] [-address Addresses] [-port No] [-daenon] [-
rel axed_conmand_check]

Starts the port mapper daemon.
epnd [-d|-debug] [-port No] [-names|-kill]|-stop Nane]
Communicates with a running port mapper daemon.

This daemon acts as a name server on all hosts involved in distributed Erlang computations. When an Erlang node
starts, the node has a name and it obtains an address from the host OS kernel. The name and address are sent to the
epnd daemon running on the local host. In a TCP/IP environment, the address consists of the IP address and a port
number. The node name is an atom on the form of Name@ode. The job of the epnd daemon is to keep track of
which node name listens on which address. Hence, epnd maps symbolic node names to machine addresses.

The TCP/IP epnd daemon only keepstrack of the Narre (first) part of an Erlang node name. The Host part (whatever
is after the @ is implicit in the node name where the epnd daemon was contacted, as is the IP address where the
Erlang node can be reached. Consistent and correct TCP naming services are therefore required for an Erlang network
to function correctly.

On Windowsthe maximum number of nodesallowed in one epmd instanceis 60. Thisisbecause of limitationsinthe
current implementation. If you need more nodes, you should |ook into using and erlang based epmd implementation
such as Erlang EPMD.

Starting the port mapper daemon

Thedaemon is started automatically by commander | (1) if thenodeisto bedistributed and no running instance
is present. If automatically launched environment variables must be used to change the behavior of the daemon;
see section Environment Variables.

If argument - daenon is not specified, epnd runsasanormal program with the controlling terminal of the shell
inwhich it is started. Normally, it is to be run as a daemon.

Regular startup options are described in section Regular Options.
The DbgEXt r a options are described in section DbgExtra Options.
Communicating with a running port mapper daemon
Communicating with the running epnd daemon by the epnd program is done primarily for debugging purposes.
The different queries are described in section I nteractive options.

Regular Options

These options are available when starting the name server. The name server is normally started automatically by
commander | (1) (if not aready available), but it can also be started at system startup.

-address Li st

Letsthisinstance of epnd listen only on the comma-separated list of 1P addresses and on the loopback address
(whichisimplicitly added to thelist if it has not been specified). This can also be set using environment variable
ERL_EPMD ADDRESS; see section Environment Variables.

128 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

href

epmd

-port No

Letsthisinstance of epnd listen to another TCP port than default 4369. This can also be set using environment
variable ERL_EPVD_PORT; see section Environment Variables.

-d | -debug

Enables debug output. The more - d flags specified, the more debug output you will get (to acertain limit). This
option is most useful when the epnd daemon is not started as a daemon.

- daenon

Starts epnd detached from the controlling terminal. Logging ends up in syslog when available and correctly
configured. If the epnd daemon is started at boot, this option is definitely to be used. It is also used when
command er | automatically starts epnd.

-rel axed_command_check

Starts the eprrd program with relaxed command checking (mostly for backward compatibility). This affects the
following:

e With relaxed command checking, the epnd daemon can be killed from the local host with, for example,
command epd - ki | | even if active nodes are registered. Normally only daemons with an empty node
database can be killed withepmd - ki | | .

e Command epnd -stop (and the corresponding messages to epnd, as can be specified using
erl _interface: ei (3))isnormaly alwaysignored. Thisbecauseit can cause astrange situation where
two nodes of the same name can be alive at the same time. A node unregisters itself by only closing the
connection to eprd, which iswhy command st op was only intended for use in debugging situations.

With relaxed command checking enabled, you can forcibly unregister live nodes.

Relaxed command checking can aso be enabled by setting environment variable
ERL_EPMD_RELAXED COMMAND_CHECK before starting epnd.

Use relaxed command checking only on systems with very limited interactive usage.

DbgExtra Options

These options are only for debugging and testing epnd clients. They are not to be used in normal operation.

- packet _ti meout Seconds

Sets the number of seconds a connection can be inactive before epd times out and closes the connection.
Defaultsto 60.

-del ay_accept Seconds

To simulate a busy server, you can insert a delay between when epnd gets notified that a new connection is
reguested and when the connection gets accepted.

-delay_write Seconds
Also asimulation of abusy server. Inserts adelay before areply is sent.

Interactive Options

These options make epnd run as an interactive command, displaying the results of sending queries to an already
running instance of epnd. The epnd contacted is always on the local node, but option - por t can be used to select
between instances if several are running using different ports on the host.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 129

epmd

-port No

Contacts the epnd listening on the specified TCP port number (default 4369). This can aso be set using
environment variable ERL_ EPMD_PORT; see section Environment Variables.

- nanes

Lists names registered with the currently running epnd.
-kill

Kills the currently running epnd.

Killing the running epnd is only alowed if epmd - nanmes shows an empty database or if -
r el axed_conmand_check was specified when the running instance of epnd was started.

Noticethat - r el axed_comand_check is specified when starting the daemon that is to accept killing when
it has live nodes registered. When running epd interactively, - r el axed_conmand_check has no effect.
A daemon that is started without relaxed command checking must be killed using, for example, signals or some
other OS-specific method if it has active clients registered.

-stop Nane
Forcibly unregisters alive node from the epnd database.

This command can only be used when contacting epnd instances started with flag -
rel axed_conmand_check.

Notice that relaxed command checking must enabled for the epnd daemon contacted. When running epnd
interactively, - r el axed_conmmand_check has no effect.

Environment Variables
ERL_EPMD_ADDRESS

Can be set to a comma-separated list of 1P addresses, in which case the eprrd daemon will listen only on the
specified address(es) and on theloopback address (which isimplicitly added to thelist if it has not been specified).
The default behavior isto listen on all available | P addresses.

ERL_EPMD_PORT

Can contain the port number eprrd will use. The default port will work fine in most cases. A different port can
be specified to allow several instances of epnd, representing independent clusters of nodes, to co-exist on the
same host. All nodesin acluster must use the same epnd port number.

ERL_EPMD_RELAXED_COMVAND_CHECK

If set before start, the epnd daemon behaves as if option - r el axed_conmand_check was specified at
startup. Consequently, if this option is set before starting the Erlang virtual machine, the automatically started
epmd acceptsthe- ki | | and - st op commands without restrictions.

Logging
On some operating systems syslog will be used for error reporting when eprd runs as a daemon. To enable the error
logging, you must edit the /etc/syslog.conf file and add an entry:

lepmd
* *<TABs>/var/log/epmd. log

where <TABs> are at least one real tab character. Spaces are silently ignored.

130 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

epmd

Access Restrictions

The epnd daemon accepts messages from both the local host and remote hosts. However, only the query commands
are answered (and acted upon) if the query comes from a remote host. It is aways an error to try to register a node
name if the client is not a process on the same host as the epnd instance is running on. Such requests are considered
hostile and the connection is closed immediately.

The following queries are accepted from remote nodes:

* Port queries, that is, on which port the node with a specified name listens
* Nameligting, that is, givesalist of all names registered on the host

To restrict access further, firewall software must be used.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 131

erl

erl

Command

Theer | program startsan Erlang runtime system. The exact details (for example, whether er | isascript or aprogram
and which other programsit calls) are system-dependent.

Windows users probably want to use the wer | program instead, which runs in its own window with scrollbars and
supports command-line editing. Theer | program on Windows provides no line editing in its shell, and on Windows
95 thereis no way to scroll back to text that has scrolled off the screen. Theer | program must be used, however, in
pipelines or if you want to redirect standard input or output.

As from ERTS 5.9 (Erlang/OTP R15B) the runtime system does by default not bind schedulers to logical
processors. For more information, see system flag +sbt .

Exports

erl <arguments>

Starts an Erlang runtime system.

The arguments can be divided into emulator flags, flags, and plain arguments:
« Any argument starting with character + isinterpreted as an emulator flag.

Asindicated by the name, emulator flags control the behavior of the emulator.
« Any argument starting with character - (hyphen) isinterpreted as aflag, which isto be passed to the Erlang part
of the runtime system, more specifically tothei ni t system process, seei ni t (3).

Thei ni t processitself interprets some of these flags, the init flags. It also stores any remaining flags, the user
flags. The latter can beretrieved by callingi ni t : get _ar gunent/ 1.
A small number of "-" flags exist, which now actually are emulator flags, see the description below.

* Plain arguments are not interpreted in any way. They are also stored by thei ni t process and can be retrieved by
calingi ni t: get _pl ai n_ar gunent s/ 0. Plain arguments can occur before thefirst flag, or after a- - flag.
Also, the - ext r a flag causes everything that follows to become plain arguments.

Examples:

% erl +W w -sname arnie +R 9 -s my init -extra +bertie
(arnie@host)1> init:get argument(sname).

{ok,[["arnie"]1]}
(arnie@host)2> init:get plain_arguments().
["+bertie"]

Here+W wand +R 9 are emulator flags. -s ny_i ni t isaninit flag, interpreted by i nit.-snane arni eisa
user flag, stored by i ni t . It isread by Kernel and causes the Erlang runtime system to become distributed. Finally,
everything after - ext r a (that is, +ber t i e) isconsidered as plain arguments.

132 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

% erl -myflag 1

1> init:get argument(myflag).
{ok, [["1"]11}

2> init:get plain arguments().

[l

Here the user flag - myf | ag 1 is passed to and stored by the i ni t process. It is a user-defined flag, presumably
used by some user-defined application.

Flags

In the following lit, init flags are marked "(init flag)". Unless otherwise specified, all other flags are user flags, for
which the values can be retrieved by calling i ni t : get _argunent/ 1. Notice that the list of user flags is not
exhaustive, there can be more application-specific flags that instead are described in the corresponding application
documentation.

- - (init flag)
Everything following - - up to the next flag (- f | ag or +f | ag) is considered plain arguments and can be
retrieved usingi ni t : get _pl ai n_ar gunent s/ 0.

-Application Par Val

Sets the application configuration parameter Par to the value Val for the application Appl i cati on; see
app(4) andappl i cation(3).

-args_file Fil eNane

Command-line arguments are read from the file Fi | eNane. The arguments read from the file replace flag '-
args_fil e Fil eNane'on theresulting command line.

ThefileFi | eNane isto beaplain text file and can contain comments and command-line arguments. A comment
begins with a # character and continues until the next end of line character. Backslash (\\) is used as quoting
character. All command-line arguments accepted by er | areallowed, alsoflag-args_fil e Fi |l eNane.Be
careful not to cause circular dependencies between files containing flag - ar gs_fi | e, though.

Theflag - ext r a istreated in special way. Its scope ends at the end of the file. Argumentsfollowingan- extr a
flag are moved on the command line into the - ext r a section, that is, the end of the command line following
after an - ext r a flag.

-async_shel | _start

The initial Erlang shell does not read user input until the system boot procedure has been completed (Erlang/
OTP 5.4 and later). This flag disables the start synchronization feature and lets the shell start in parallel with
the rest of the system.

-boot File

Specifiesthe name of the boot file, Fi | e. boot , whichisused to start the system; seei ni t (3) . UnlessFi | e
contains an absolute path, the system searchesfor Fi | e. boot inthe current and $ROCT/ bi n directories.

Defaultsto $ROOT/ bi n/ start . boot .
-boot _var Vvar Dir

If the boot script contains a path variable Var other than $ROOT, this variable is expanded to Di r . Used
when applications are installed in another directory than $ROOT/ | i b; seesyst ool s: make_script/1, 2
in SASL.

-code_pat h_cache
Enables the code path cache of the code server; seecode(3) .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 133

erl

-conpile Mbdl Mbd2 ...

Compiles the specified modules and then terminates (with non-zero exit code if the compilation of some file did
not succeed). Implies- noi nput .

Not recommended; use er | ¢ instead.
-config Config [Config ...]

Specifies the name of one or more configuration files, Confi g. confi g, which is used to configure
applications; seeapp(4) andappl i cat i on(3) . Seethe documentation for the configuration file format for
adescription of the configuration format and the order in which configuration parameters are read.

-configfd FD [FD .. .]

Specifies the name of one or more file descriptors (called configuration file descriptors from here on) with
configuration data for applications; see app(4) and appl i cation(3). See the documentation for the
configuration file format for a description of the configuration format and the order in which configuration
parameters are read.

A configuration file descriptor will be read until its end and will then be closed.

The content of a configuration file descriptor is stored so that it can be reused wheni nit:restart/0 or
init:restart/1iscaled.

The parameter - confi gf d 0 implies- noi nput .

It is not recommended to use file descriptors 1 (standard output), and 2 (standard error) together with -
confi gf d as these file descriptors are typically used to print information to the console the program is
running in.

Examples (Unix shell):

$ erl \

-noshell \

-configfd 3 \

-eval \

'io:format("~p~n", [application:get env(kernel, logger level)]),erlang:halt()' 3< \
<(echo '[{kernel, [{logger level, warning}]}1.")

{ok,warning}

$ echo '[{kernel, [{logger level, warning}]}].' > testl.config

$ echo '[{kernel, [{logger level, error}]}].' > test2.config

$ erl \

-noshell \

-configfd 3 \

-configfd 4 \

-eval \

'io:format("~p~n", [application:get env(kernel, logger level)]),erlang:halt()"' \
3< testl.config 4< test2.config

{ok,error}

-connect _all false

If thisflag ispresent, gl obal doesnot maintain afully connected network of distributed Erlang nodes, and then
global name registration cannot be used; see gl obal (3) .

134 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

- cooki e Cooki e
Obsol ete flag without any effect and common misspelling for - set cooki e. Use- set cooki e instead.
- det ached

Startsthe Erlang runtime system detached from the system console. Useful for running daemons and backgrounds
processes. Implies- noi nput .

-emu_args
Useful for debugging. Prints the arguments sent to the emulator.
-emu_flavor emu|jit|snp

Start an emulator of a different flavor. Normally only one flavor is available, more can be added by building
specific flavors. The currently available flavors are: ermmu and j i t. The snp flavor is an alias for the current
default flavor. Y ou can combine this flag with - - emu_t ype. You can get the current flavor at run-time using
erl ang: system i nfo(emu_fl avor) . (The emulator with this flavor must be built. You can build a
specific flavor by doing make FLAVOR=$FLAVOR in the Erlang/OTP source repository.)

-enmu_type Type

Start an emulator of a different type. For example, to start the lock-counter emulator, use- emu_t ype | cnt.
You can get the current type at run-time using er | ang: system_ i nf o(bui | d_t ype) . (The emulator of
this type must already be built. Use the conf i gur e option - - enabl e- | ock- count er to build the lock-
counter emulator.)

-env Variabl e Val ue
Setsthe host OS environment variable Var i abl e to the value Val ue for the Erlang runtime system. Example:

% erl -env DISPLAY gin:0

In this example, an Erlang runtime system is started with environment variable DI SPLAY setto gi n: 0.
- epnd_nodul e Modul e (init flag)

Configures the module responsible to communicate to epmd. Defaultstoer | _epnd.
-erl _epmd_port Port (initflag)

Configuresthe port used by erl_epmd to listen for connection and connect to other nodes. See erl_epmd for more
details. Defaultsto O.

-eval Expr (initflag)
Makesi ni t evaluate the expression Expr ; seei ni t (3).
- ext r a (init flag)

Everything following -extra is considered plain arguments and can be retrieved using
init:get_plain_argunents/O.

- heart
Starts heartbeat monitoring of the Erlang runtime system; seeheart (3) .
- hi dden

Startsthe Erlang runtime system as ahidden node, if it isrun asadistributed node. Hidden nodes always establish
hidden connections to all other nodes except for nodes in the same globa group. Hidden connections are not
published on any of the connected nodes, that is, none of the connected nodes are part of theresult fromnodes/ 0
on the other node. See aso hidden global groups; gl obal _gr oup(3) .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 135

erl

-hosts Hosts

Specifiesthe | P addresses for the hosts on which Erlang boot serversarerunning, seeer | _boot _server (3).
Thisflag ismandatory if flag - | oader i net ispresent.

The | P addresses must be specified in the standard form (four decimal numbers separated by periods, for example,
"150. 236. 20. 74" . Hosts names are not acceptable, but a broadcast address (preferably limited to the local
network) is.

-id Id

Specifies the identity of the Erlang runtime system. If it isrun as a distributed node, | d must be identical to the
name supplied together with flag - snane or - nane.

-init_debug

Makesi ni t write some debug information while interpreting the boot script.

-instr (emulator flag)

Selectsan instrumented Erlang runtime system (virtual machine) to run, instead of the ordinary one. When running
an instrumented runtime system, some resource usage data can be obtained and analyzed using thei nst r unent
module. Functionally, it behaves exactly like an ordinary Erlang runtime system.

-l oader Loader

Specifies the method used by erl primloader to load Erlang modules into the system; see
erl _prim.| oader(3).TwoLoader methods are supported:

« efil e, which meansusetheloca file system, thisisthe default.

e inet, which means use a boot server on another machine. The flags - i d, - host s and - set cooki e
must also be specified.

If Loader issomething else, the user-supplied Loader port program is started.

- make

Makesthe Erlang runtime system invoke make: al | () inthe current working directory and then terminate; see
make(3) . Implies- noi nput .

-man Modul e

Displays the manual page for the Erlang module Mbdul e. Only supported on Unix.

-nmode interactive | enbedded

Modules are auto loaded when they are first referenced if the runtime system runsin i nt er act i ve mode,
which isthe default. Inembedded mode modules are not auto loaded. Thelatter is recommended when the boot
script preloads all modules, as conventionally happensin OTP releases. Seecode(3) .

-nane Nanme

Makes the Erlang runtime system into a distributed node. This flag invokes all network servers necessary for a
node to become distributed; seenet _ker nel (3) . It isalso ensured that epnd runs on the current host before
Erlang is started; seeepnd(1) andthe- st art _epnd option.

The node name will be Name @ost , where Host isthe fully qualified host name of the current host. For short
names, use flag - snamne instead.

If Nane is set to undef i ned the node will be started in a special mode optimized to be the temporary client
of another node. The node will then request a dynamic node name from the first node it connects to. Read more
in Dynamic Node Name.

136 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

Starting a distributed node without also specifying - prot o_di st i net _t| s will expose the node to
attacks that may give the attacker complete access to the node and in extension the cluster. When using un-
secure distributed nodes, make sure that the network is configured to keep potential attackers out.

-no_epnd
Specifies that the distributed node does not need epmd at all.

This option ensures that the Erlang runtime system does not start epmd and does not start the erl_epmd process
for distribution either.

This option only works if Erlang is started as a distributed node with the -proto_dist option using an alternative
protocol for Erlang distribution which does not rely on epmd for node registration and discovery. For more
information, see How to implement an Alternative Carrier for the Erlang Distribution.

- noi nput
Ensures that the Erlang runtime system never tries to read any input. Implies- noshel | .
-noshel |

Starts an Erlang runtime system with no shell. This flag makes it possible to have the Erlang runtime system as
acomponent in a series of Unix pipes.

-nostick

Disables the sticky directory facility of the Erlang code server; see code(3) .
- ol dshel |

Invokes the old Erlang shell from Erlang/OTP 3.3. The old shell can still be used.
-paDrlDr2...

Adds the specified directories to the beginning of the code path, similar to code: add_pat hsa/ 1. Note that
the order of the given directories will be reversed in the resulting path.

As an dternative to - pa, if several directories are to be prepended to the code path and the directories have
a common parent directory, that parent directory can be specified in environment variable ERL_LI BS; see
code(3).

-pz Dirl1 Dir2 ...

Adds the specified directories to the end of the code path, similar to code: add_pat hsz/ 1; seecode(3) .
-path Dirl Dir2 ...

Replaces the path specified in the boot script; seescri pt (4) .
-proto_dist Proto

Specifies aprotocol for Erlang distribution:

inet _tcp
TCP over |Pv4 (the default)
inet tls
Distribution over TLS/SSL, See the Using SSL for Erlang Distribution User's Guide for details on how to
setup a secure distributed node.
inet6 _tcp
TCP over IPv6

For example, to start up IPv6 distributed nodes:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 137

erl

% erl -name test@ipv6node.example.com -proto dist inet6 tcp
-remsh Node
Starts Erlang with aremote shell connected to Node.

If no- nane or - sname isgiventhenodewill bestarted using - sname undef i ned. If Node doesnot contain
a hostname, one is automatically taken from - nane or - snane

Before OTP-23 the user needed to supply avalid - snane or - name for - r ensh to work. Thisis still the
case if the target node is not running OTP-23 or later.

-rsh Program
Specifies an alternative to ssh for starting a slave node on aremote host; see sl ave(3) .
-run Mod [Func [Argl, Arg2, ...]] (initflag)

Makesi ni t cal the specified function. Func defaultsto st art . If no arguments are provided, the function
is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list [Argl, Arg2,...] as
argument. All arguments are passed as strings. Seei ni t (3) .

-s Mod [Func [Argl, Arg2, ...]] (initflag)

Makesi ni t cal the specified function. Func defaultsto st ar t . If no arguments are provided, the function
is assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list [Argl, Arg2,...] as
argument. All arguments are passed as atoms. Seei nit(3).

- set cooki e Cooki e

Sets the magic cookie of the node to Cooki e; seeer | ang: set _cooki e/ 2.
- set cooki e Node Cooki e

Sets the magic cookie for Node to Cooki e; seeer | ang: set _cooki e/ 2.
-shutdown_tine Tine

Specifies how long time (in milliseconds) the i ni t process is alowed to spend shutting down the system. If
Ti e milliseconds have elapsed, all processes still existing are killed. Defaultstoi nfinity.

-snane Nane

Makes the Erlang runtime system into a distributed node, similar to - namne, but the host name portion of the
node name Name @Host will be the short name, not fully qualified.

Thisis sometimes the only way to run distributed Erlang if the Domain Name System (DNS) is not running. No
communication can exist between nodes running with flag - snane and those running with flag - nane, asnode
names must be unique in distributed Erlang systems.

If Nane is set to undef i ned the node will be started in a special mode optimized to be the temporary client
of another node. The node will then request a dynamic node name from the first node it connects to. Read more
in Dynamic Node Name.

War ning:

Starting a distributed node without also specifying - prot o_di st i net _t1 s will expose the node to
attacks that may give the attacker complete access to the node and in extension the cluster. When using un-
secure distributed nodes, make sure that the network is configured to keep potential attackers out.

138 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

-start_epnd true | false

Specifies whether Erlang should start epmd on startup. By default thisist r ue, but if you prefer to start epmd
manually, set thistof al se.

This only applies if Erlang is started as a distributed node, i.e. if - nane or - snane is specified. Otherwise,
epmd isnot started even if - st art _epnd t rue isgiven.

Note that a distributed node will fail to start if epmd is not running.

-ver si on (emulator flag)

Makes the emulator print its version number. The sameaser| +V.

Emulator Flags

er | invokesthe code for the Erlang emulator (virtual machine), which supports the following flags:

+a

+A

+B

+C

+C

si ze

Suggested stack size, in kilowords, for threads in the async thread pool. Valid range is 16-8192 kilowords.
The default suggested stack size is 16 kilowords, that is, 64 kilobyte on 32-bit architectures. This small default
size has been chosen because the number of async threads can be large. The default size is enough for drivers
delivered with Erlang/OTP, but might not be large enough for other dynamically linked-in drivers that use the
driver_async() functionality. Notice that the value passed is only a suggestion, and it can even be ignored
on some platforms.

si ze

Sets the number of threads in async thread pool. Valid range is 1-1024. The async thread pool is used by linked-
in drivers to handle work that may take a very long time. Since OTP 21 there are very few linked-in driversin
the default Erlang/OTP distribution that uses the async thread pool. Most of them have been migrated to dirty
|0 schedulers. Defaults to 1.

[c | df i]

Option ¢ makes Ct r | - Cinterrupt the current shell instead of invoking the emulator break handler. Option d
(same as specifying +B without an extra option) disables the break handler. Optioni makes the emulator ignore
any break signal.

If option ¢ isused with ol dshel | on Unix, Ct r| - Cwill restart the shell process rather than interrupt it.

Notice that on Windows, this flag is only applicable for wer | , not er | (ol dshel |). Noticealsothat Ct r | -
Br eak isused instead of Ct r | - C on Windows.

true | false
Enables or disables time correction:

true

Enables time correction. Thisisthe default if time correction is supported on the specific platform.
fal se

Disables time correction.

For backward compatibility, the boolean value can be omitted. Thisisinterpreted as+c f al se.
no_time_warp | single_time_warp | multi_time_warp
Sets time warp mode;

no_time_warp

No time warp mode (the default)
single_tine_warp

Single time warp mode

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 139

erl

+d

multi _time_warp
Multi-time warp mode

If the emulator detects an internal error (or runs out of memory), it, by default, generates both a crash dump and
a core dump. The core dump is, however, not very useful as the content of process heaps is destroyed by the
crash dump generation.

Option +d instructs the emulator to produce only a core dump and no crash dump if aninternal error is detected.

Cdling er | ang: hal t/ 1 with a string argument still produces a crash dump. On Unix systems, sending an
emulator process a S| GUSR1 signal also forces a crash dump.

+dcg Decentral i zedCount er GoupsLinmit

+e

+ec

Limitsthe number of decentralized counter groups used by decentralized countersoptimized for update operations
in the Erlang runtime system. By default, the limit is 256.

When the number of schedulers is less than or equal to the limit, each scheduler has its own group. When
the number of schedulers is larger than the groups limit, schedulers share groups. Shared groups degrade the
performance for updating counters while many reader groups degrade the performance for reading counters. So,
the limit is a tradeoff between performance for update operations and performance for read operations. Each
group consumes 64 bytes in each counter.

Notice that a runtime system using decentralized counter groups benefits from binding schedulers to logical
processors, as the groups are distributed better between schedul ers with this option.

This option only affects decentralized counters used for the counters that are keeping track of the memory
consumption and the number of terms in ETS tables of type ordered set with the write_concurrency option
activated.

Nurnber
Sets the maximum number of ETS tables. Thislimit is partially obsolete.

Forces option conpr essed on al ETS tables. Only intended for test and evaluation.

+f nl

The virtual machine works with filenames as if they are encoded using the ISO Latin-1 encoding, disallowing
Unicode characters with code points > 255.

For more information about Unicode filenames, see section Unicode Filenames in the STDLIB User's Guide.
Notice that this value also applies to command-line parameters and environment variables (see section Unicode
in Environment and Parameters in the STDLIB User's Guide).

+Hnu[{wi]e}]

The virtual machine works with filenames as if they are encoded using UTF-8 (or some other system-specific
Unicode encoding). This is the default on operating systems that enforce Unicode encoding, that is, Windows
MacOS X and Android.

The +f nu switch can be followed by w, i , or e to control how wrongly encoded filenames are to be reported:

e« wmeansthat awarning issenttotheerr or _| ogger whenever awrongly encoded filename is " skipped"
in directory listings. Thisis the defaullt.

* i meansthat those wrongly encoded filenames are silently ignored.
« e meansthat the API function returns an error whenever a wrongly encoded filename (or directory name)
is encountered.

Noticethatfi | e: read_l i nk/ 1 alwaysreturns an error if the link pointsto an invalid filename.

140 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

For more information about Unicode filenames, see section Unicode Filenames in the STDLIB User's Guide.
Notice that this value also applies to command-line parameters and environment variables (see section Unicode
in Environment and Parametersin the STDLIB User's Guide).

+fna[{wi]e}]

Selection between +f nl and +f nu is done based on the current local e settings in the OS. This meansthat if you
have set your terminal for UTF-8 encoding, the filesystem is expected to use the same encoding for filenames.
Thisisthe default on all operating systems, except Android, MacOS X and Windows.

The +f na switch can befollowed by w, i , or e. This has effect if the local e settings cause the behavior of +f nu
to be selected; seethe description of +f nu above. If thelocale settings cause the behavior of +f nl to be selected,
thenw, i , or e have no effect.

For more information about Unicode filenames, see section Unicode Filenames in the STDLIB User's Guide.
Notice that this value aso applies to command-line parameters and environment variables (see section Unicode
in Environment and Parametersin the STDLIB User's Guide).

+hns Size

Sets the default heap size of processesto thesize Si ze.
+hnmbs Si ze

Sets the default binary virtual heap size of processestothesize Si ze.
+hmax Size

Sets the default maximum heap size of processestothesize Si ze. Defaultsto 0, which meansthat no maximum
heap size is used. For moreinformation, see pr ocess_f | ag(max_heap_si ze, MaxHeapSi ze).

+hmaxel true|fal se

Sets whether to send an error logger message or not for processes reaching the maximum heap size. Defaults to
t r ue. For more information, see pr ocess_f | ag(max_heap_si ze, MaxHeapSi ze).

+hmaxk true|fal se

Sets whether to kill processes reaching the maximum heap size or not. Default to t r ue. For more information,
seeprocess_fl ag(max_heap_si ze, MaxHeapSi ze).

+hpds Si ze
Setstheinitial process dictionary size of processesto thesize Si ze.
+hmgd of f _heap| on_heap

Sets the default value of the nessage_queue_dat a process flag. Defaults to on_heap. If +hrmgd is not
passed, on_heap will bethedefault. For moreinformation, seepr ocess_f | ag(message_queue_dat a,

MQD) .
+ Op Poll Sets

Sets the number of 10 pollsets to use when polling for I/O. This option is only used on platforms that support
concurrent updates of apollset, otherwise the same number of pollsetsare used as1O poll threads. Thedefaultis 1.

+1 & Pol | Thr eads

Sets the number of 10 poll threads to use when polling for 1/0. The maximum number of poll threads allowed
is1024. The default is 1.

A good way to check if more 10 poll threads are needed is to use microstate accounting and see what the load of
the 10 poll thread is. If it ishigh it could be a good ideato add more threads.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 141

erl

+1 OPp Pol | Set sPer cent age

Similar to +1 Op but uses percentages to set the number of 10 pollsets to create, based on the number of poll
threads configured. If both +1 OPp and +I OQp are used, +1 OPp isignored.

+1 OPt Pol | Thr eadsPer cent age

Similar to +1 Ot but uses percentages to set the number of 10 poll threads to create, based on the number of
schedulers configured. If both +1 OPt and +I O are used, +1 OPt isignored.

+JPperf true|fal se

Enables or disables support for the "perf” profiler when running with the JIT on Linux. Defaultsto false.

For more details about how to run perf see the perf support section in the BeamAsm internal documentation.
+L

Prevents loading information about source filenames and line numbers. This saves some memory, but exceptions
do not contain information about the filenames and line numbers.

+MFl ag Val ue
Memory allocator-specific flags. For moreinformation, seeerts_al | oc(3).
+pc Range

Sets the range of characters that the system considers printable in heuristic detection of strings. This typically
affects the shell, debugger, and i o: f or mat functions (when ~t p is used in the format string).

Two values are supported for Range:

latinl
The default. Only charactersin the 1SO Latin-1 range can be considered printable. This means that a
character with a code point > 255 is never considered printable and that lists containing such characters
are displayed as lists of integers rather than text strings by tools.

uni code
All printable Unicode characters are considered when determining if alist of integersisto be displayed
in string syntax. This can give unexpected results if, for example, your font does not cover all Unicode
characters.

Seealsoi o: printabl e range/ 0inSTDLIB.
+P Nurber

Sets the maximum number of simultaneously existing processes for this system if aNumnber is passed as value.
Valid range for Nunber is[1024- 134217727]

NOTE: The actual maximum chosen may be much larger than the Nunber passed. Currently the runtime system
often, but not always, chooses avalue that is a power of 2. This might, however, be changed in the future. The
actual value chosen can be checked by calling erlang:system_info(process_limit).

The default valueis 262144
+Q Nunber

Sets the maximum number of simultaneously existing ports for this system if aNumber is passed asvalue. Valid
range for Nunber is[1024-134217727]

NOTE: The actual maximum chosen may be much larger than the actual Nunber passed. Currently the runtime
system often, but not always, chooses avalue that isapower of 2. This might, however, be changed in the future.
The actual value chosen can be checked by calling erlang:system_info(port_limit).

142 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

Thedefault value usedisnormally 65536. However, if the runtime systemis abl e to determine maximum amount
of file descriptorsthat it is allowed to open and this value is larger than 65536, the chosen value will increased
to avalue larger or equal to the maximum amount of file descriptors that can be opened.

OnWindowsthe default valueisset to 8196 becausethe normal OS limitationsare set higher than most machines
can handle.

+R Rel easeNunber
Sets the compatibility mode.

The distribution mechanism is not backward compatible by default. This flag sets the emulator in compatibility
mode with an earlier Erlang/OTP release Rel easeNunber. The release number must be in the range
<current release>2..<current release>. Thislimitsthe emulator, making it possible for it to
communicate with Erlang nodes (as well as C- and Java nodes) running that earlier release.

Ensure that all nodes (Erlang-, C-, and Java nodes) of a distributed Erlang system is of the same Erlang/OTP
release, or from two different Erlang/OTP releases X and Y, where all Y nodes have compatibility mode X.

+r
Forces ETS memory block to be moved on realloc.
+rg Reader GroupsLinmt

Limits the number of reader groups used by read/write locks optimized for read operations in the Erlang runtime
system. By default the reader groups limit is 64.

When the number of schedulersislessthan or equal to the reader groups limit, each scheduler hasits own reader
group. When the number of schedulers is larger than the reader groups limit, schedulers share reader groups.
Shared reader groups degrade read lock and read unlock performance while many reader groups degrade write
lock performance. So, the limit is a tradeoff between performance for read operations and performance for write
operations. Each reader group consumes 64 byte in each read/write lock.

Notice that a runtime system using shared reader groups benefits from binding schedulers to logical processors,
asthe reader groups are distributed better between schedulers.

+S Schedul er s: Schedul er Onl i ne

Sets the number of scheduler threads to create and scheduler threads to set online. The maximum for both values
is1024. If the Erlang runtime system is able to determine the number of logical processors configured and logical
processors available, Schedul er s defaults to logical processors configured, and Schedul er sOnl i ne
defaultsto logical processors available; otherwise the default values are 1. If the emulator detectsthat it is subject
to a CPU quota, the default value for Schedul er sOnl i ne will be limited accordingly.

Schedul ers can be omitted if : Schedul erOnline is not and conversely. The number of
schedulers online can be changed at runtime through er | ang: system fl ag(schedul ers_onl i ne,
Schedul ersOnl i ne).

If Schedul er s or Schedul er sOnl i ne is specified as a negative number, the value is subtracted from the
default number of logical processors configured or logical processors available, respectively.

Specifying value O for Schedul ers or Schedul er sOnl i ne resets the number of scheduler threads or
scheduler threads online, respectively, to its default value.

+SP Schedul er sPer cent age: Schedul er sOnl i nePer cent age

Similar to +S but uses percentages to set the number of scheduler threads to create, based on logical
processors configured, and scheduler threads to set online, based on logical processors available. Specified

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 143

erl

values must be > 0. For example, +SP 50: 25 sets the number of scheduler threads to 50% of
the logical processors configured, and the number of scheduler threads online to 25% of the logical
processors available. Schedul er sPer cent age can be omitted if : Schedul er sOnl i nePer cent age
is not and conversely. The number of schedulers online can be changed at runtime through
erl ang: system fl ag(schedul ers_online, Schedul ersOnline).

This option interacts with +S settings. For example, on a system with 8 logical cores configured and 8 logical
cores available, the combination of the options+S 4: 4 +SP 50: 25 (in either order) results in 2 scheduler
threads (50% of 4) and 1 scheduler thread online (25% of 4).

+SDcpu Di rt yCPUSchedul ers: Di rt yCPUSchedul er sOnl i ne

Sets the number of dirty CPU scheduler threads to create and dirty CPU scheduler threads to set online. The
maximum for both valuesis 1024, and each value is further limited by the settings for normal schedulers:

e Thenumber of dirty CPU scheduler threads created cannot exceed the number of normal scheduler threads
created.

e The number of dirty CPU scheduler threads online cannot exceed the number of normal scheduler threads
online.

For details, see the +S and +SP. By default, the number of dirty CPU scheduler threads created
equals the number of normal scheduler threads created, and the number of dirty CPU scheduler threads
online equals the number of normal scheduler threads online. Di rt yCPUSchedul ers can be omitted
if : Di rtyCPUSchedul ersOnli ne is not and conversely. The number of dirty CPU schedulers online
can be changed at runtime through erl ang: system flag(dirty cpu_schedul ers_onli ne,
Di rt yCPUSchedul er sOnl i ne).

The amount of dirty CPU schedulersislimited by the amount of normal schedulersin order to limit the effect on
processes executing on ordinary schedulers. If the amount of dirty CPU schedulers was allowed to be unlimited,
dirty CPU bound jobs would potentially starve normal jobs.

Typica users of the dirty CPU schedulers are large garbage collections, json protocol encode/decoders written
as nifs and matrix manipulation libraries.

Y ou can use msacc(3) in order to see the current load of the dirty CPU schedulers threads and adjust the number
used accordingly.

+SDPcpu Di rt yCPUSchedul er sPer cent age: Di rt yCPUSchedul er sOnl i nePer cent age

Similar to +SDcpu but uses percentages to set the number of dirty CPU scheduler threads to create and
the number of dirty CPU scheduler threads to set online. Specified values must be > 0. For example,
+SDPcpu 50: 25 sets the number of dirty CPU scheduler threads to 50% of the logical processors
configured and the number of dirty CPU scheduler threads online to 25% of the logical processors available.
Di rt yCPUSchedul er sPer cent age canbeomittedif : Di r t yCPUSchedul er sOnl i nePer cent age
is not and conversely. The number of dirty CPU schedulers online can be changed at runtime through
erl ang: system flag(dirty_cpu_schedul ers_online, D rtyCPUSchedul ersOnline).

This option interacts with +SDcpu settings. For example, on a system with 8 logical cores configured and 8
logical coresavailable, the combination of theoptions+SDcpu 4: 4 +SDPcpu 50: 25 (in either order) results
in 2 dirty CPU scheduler threads (50% of 4) and 1 dirty CPU scheduler thread online (25% of 4).

+SDi o Di rtyl OSchedul ers

Sets the number of dirty 1/0 scheduler threads to create. Valid range is 1-1024. By default, the number of dirty
1/O scheduler threads created is 10.

The amount of dirty 10 schedulers is not limited by the amount of normal schedulers like the amount of dirty
CPU schedulers. Thissince only 1/0 bound work is expected to execute on dirty 1/O schedulers. If the user should
schedule CPU bound jobs on dirty 1/0 schedulers, these jobs might starve ordinary jobs executing on ordinary
schedulers.

144 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

Typica users of the dirty 10 schedulers are reading and writing to files.

Y ou can use msacc(3) in order to see the current load of the dirty 10 schedulers threads and adjust the number
used accordingly.

+sFl ag Val ue

Scheduling specific flags.
+sbt Bi ndType
Sets scheduler bind type.

Schedulers can also be bound using flag +st bt . The only difference between these two flags is how the
following errors are handled:

Binding of schedulersis not supported on the specific platform.

No available CPU topology. That is, the runtime system was not able to detect the CPU topology
automatically, and no user-defined CPU topology was set.

If any of these errors occur when +sbt has been passed, the runtime system prints an error message, and
refusesto start. If any of these errorsoccur when +st bt hasbeen passed, the runtime system silently ignores
the error, and start up using unbound schedul ers.

Valid Bi ndTypes:

u

ns

ts

ps

S

unbound - Schedulers are not bound to logical processors, that is, the operating system decides
where the scheduler threads execute, and when to migrate them. Thisis the default.

no_spr ead - Schedulers with close scheduler identifiers are bound as close as possible in
hardware.

t hr ead_spr ead - Thread refers to hardware threads (such as Intel's hyper-threads). Schedulers
with low scheduler identifiers, are bound to the first hardware thread of each core, then schedulers
with higher scheduler identifiers are bound to the second hardware thread of each core,and so on.

processor _spread - Schedulers are spread liket hr ead_spr ead, but also over physical
processor chips.

spr ead - Schedulers are spread as much as possible.

nnts

no_node_t hread_spread - Liket hr ead_spr ead, but if multiple Non-Uniform Memory
Access (NUMA) nodes exist, schedulers are spread over one NUMA node at atime, that is, all
logical processors of one NUMA node are bound to schedulersin sequence.

nnps

no_node_processor_spread - Likepr ocessor _spr ead, but if multiple NUMA nodes
exist, schedulers are spread over one NUMA node at atime, that is, all logical processors of one
NUMA node are bound to schedulersin sequence.

t nnps

db

t hread_no_node_processor _spread - A combination of t hr ead_spr ead, and
no_node_pr ocessor _spr ead. Schedulers are spread over hardware threads across NUMA
nodes, but schedulers are only spread over processors internally in one NUMA node at atime.

def aul t _bi nd - Binds schedulers the default way. Defaults to
t hread_no_node_processor _spread (which can changein the future).

Binding of schedulersis only supported on newer Linux, Solaris, FreeBSD, and Windows systems.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 145

erl

If no CPU topology is available when flag +sbt isprocessed and Bi ndType isany other type than u, the
runtime system failsto start. CPU topology can be defined using flag +sct . Noticethat flag +sct can have
to be passed before flag +sbt on the command line (if no CPU topology has been automatically detected).

The runtime system does by default not bind schedulersto logical processors.

If the Erlang runtime system isthe only operating system process that binds threadsto logical processors,
this improves the performance of the runtime system. However, if other operating system processes
(for example another Erlang runtime system) also bind threads to logical processors, there can be a
performance penalty instead. This performance penalty can sometimes be severe. If so, you are advised
not to bind the schedulers.

How schedulers are bound matters. For example, in situations when there are fewer running processes than
schedulers online, the runtime system triesto migrate processesto schedulerswith low scheduler identifiers.
The morethe schedulers are spread over the hardware, the moreresources are available to the runtime system
in such situations.

If a scheduler fails to bind, this is often silently ignored, as it is not always possible
to verify valid logical processor identifiers. If an error is reported, it is reported to the
error_l ogger. If you want to verify that the schedulers have bound as requested, call
erl ang: system i nf o(schedul er _bi ndi ngs) .

+sbwt none|very_short|short|medi uni | ong| very_| ong

Sets scheduler busy wait threshold. Defaultsto medi um The threshold determines how long schedulers are
to busy wait when running out of work before going to sleep.

Note:

Thisflag can be removed or changed at any time without prior notice.

+sbwt dcpu none| very_short| short| medi un | ong| very_l ong
As+sbwt but affects dirty CPU schedulers. Defaultsto short .

Note:

This flag can be removed or changed at any time without prior notice.

+sbwt di 0 none| very_short| short| medi uni | ong| very_| ong
As+sbwt but affectsdirty 10 schedulers. Defaultstoshort .

Note:

Thisflag can be removed or changed at any time without prior notice.

+scl true|fal se

Enables or disables scheduler compaction of load. By default scheduler compaction of load isenabled. When
enabled, load balancing strivesfor aload distribution, which causes as many scheduler threads as possible to

146 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

be fully loaded (that is, not run out of work). Thisisaccomplished by migrating load (for example, runnable
processes) into a smaller set of schedulers when schedulers frequently run out of work. When disabled, the
frequency with which schedulers run out of work is not taken into account by the load balancing logic.

+scl fal seissimilar to +sub true, but +sub true also balances scheduler utilization between
schedulers.
+sct CpuTopol ogy
e <ld> = integer(); when 0 =< <ld> =< 65535
e <ldRange> = <ld>-<ld>
+ <ldOrldRange> = <ld> | <l dRange>
e <ldList> = <1dO | dRange>, <I dOr 1 dRange> | <IdOr|l dRange>
* <Logicallds> = L<IdList>
* <Threadlds> = T<ldList> | t<ldList>
e <Corelds> = C<ldList> | c<ldList>
* <Processorlds> = P<lIdList> | p<IdList>
e <Nodelds> = N<ldList> | n<ldList>

<l dDefs> = <Logi cal | ds><Thr eadl ds><Cor el ds><Pr ocessor | ds><Nodel ds> |
<Logi cal | ds><Thr eadl ds><Cor el ds><Nodel ds><Pr ocessor | ds>

e CpuTopol ogy = <l dDef s>: <l dDefs> | <I dDefs>

Sets a user-defined CPU topology. The user-defined CPU topology overrides any automatically detected
CPU topology. The CPU topology is used when binding schedulers to logical processors.

Uppercase letters signify rea identifiers and lowercase letters signify fake identifiers only used for
description of the topology. Identifiers passed as real identifiers can be used by the runtime system when
trying to access specific hardware; if they are incorrect the behavior is undefined. Faked logical CPU
identifiers are not accepted, as there is no point in defining the CPU topology without real logica CPU
identifiers. Thread, core, processor, and node identifiers can be omitted. If omitted, the thread ID defaults
tot O, the core ID defaultsto cO, the processor ID defaultsto pO, and the node 1D is|eft undefined. Either
each logical processor must belong to only one NUMA node, or no logical processors must belong to any
NUMA nodes.

Both increasing and decreasing <I dRange>s are allowed.

NUMA node identifiers are system wide. That is, each NUMA node on the system must have a unique
identifier. Processor identifiers are also system wide. Core identifiers are processor wide. Thread identifiers
are core wide.

The order of the identifier typesimplies the hierarchy of the CPU topology. The valid orders are asfollows:

* <Logi cal | ds><Thr eadl ds><Cor el ds><Pr ocessor | ds><Nodel ds>, that is, thread is
part of acorethat is part of a processor, which is part of aNUMA node.

* <Logi cal I ds><Thr eadl ds><Cor el ds><Nodel ds><Pr ocessor | ds>, that is, thread is
part of acorethat is part of aNUMA node, which is part of a processor.

A CPU topology can consist of both processor external, and processor internal NUMA nodes aslong as each
logical processor belongs to only one NUMA node. If <Pr ocessor | ds> is omitted, its default position
isbefore <Nodel ds>. That is, the default is processor external NUMA nodes.

If alist of identifiersisused in an <I dDef s>:

* <Logi cal | ds> must bealist of identifiers.
e Atleast one other identifier type besides<Logi cal | ds> must also have alist of identifiers.
» Alllistsof identifiers must produce the same number of identifiers.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 147

erl

A simple example. A single quad core processor can be described as follows:

% erl +sct LO-3c0-3

1> erlang:system info(cpu_ topology).

[{processor, [{core,{logical,0}},
{core,{logical,1}},
{core, {logical,2}},
{core,{logical,3}}1}1]

A more complicated example with two quad core processors, each processor in its own NUMA node. The
ordering of logical processorsisabit weird. Thisto give a better example of identifier lists:

% erl +sct LO-1,3-2c0-3pONO:L7,4,6-5c0-3plN1

1> erlang:system info(cpu_topology).

[{node, [{processor, [{core,{logical,0}},
{core,{logical,1}},
{core, {logical,3}},
{core, {logical,2}}1}1},

{node, [{processor, [{core,{logical,7}},

{core,{logical,h4}},
{core, {logical,6}},
{core, {logical,5}}1}1}1

Aslong asreal identifiers are correct, it is OK to pass a CPU topology that isnot a correct description of the
CPU topology. When used with care this can be very useful. Thisto trick the emulator to bind its schedulers
as you want. For example, if you want to run multiple Erlang runtime systems on the same machine, you
want to reduce the number of schedulers used and manipul ate the CPU topology so that they bind to different
logical CPUs. An example, with two Erlang runtime systems on a quad core machine:

% erl +sct LO-3c0-3 +sbt db +S3:2 -detached -noinput -noshell -sname one
% erl +sct L3-0c0-3 +sbt db +5S3:2 -detached -noinput -noshell -sname two

In this example, each runtime system have two schedulers each online, and all schedulers online will run on
different cores. If we change to one scheduler online on one runtime system, and three schedulers online on
the other, all schedulers online will still run on different cores.

Notice that a faked CPU topology that does not reflect how the real CPU topology looks like is likely to
decrease the performance of the runtime system.

For moreinformation, seeer | ang: system i nfo(cpu_t opol ogy) .
+sfwi Interval

Sets scheduler-forced wakeup interval. All run queues are scanned each | nt er val milliseconds. While
there are sleeping schedulers in the system, one scheduler is woken for each non-empty run queue found.
I nt erval defaultto 0, meaning thisfeatureis disabled.

This feature has been introduced as atemporary workaround for long-executing native code, and native
code that does not bump reductions properly in OTP. When these bugs have been fixed, this flag will
be removed.

+spp Bool

Sets default scheduler hint for port parallelism. If set to t r ue, the virtual machine schedules port tasks
when it improves parallelism in the system. If setto f al se, the virtual machine tries to perform port tasks

148 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

immediately, improving latency at the expense of parallelism. Default to f al se. The default used can be
inspected in runtime by calling er | ang: system i nf o(port _paral | el i sn) . The default can be
overridden on port creation by passing option par al | el i smtoer| ang: open_port/ 2.

+sss size

Suggested stack size, in kilowords, for scheduler threads. Valid range is 20-8192 kilowords. The default
suggested stack sizeis 128 kilowords.

+sssdcpu si ze

Suggested stack size, in kilowords, for dirty CPU scheduler threads. Valid range is 20-8192 kilowords. The
default suggested stack size is 40 kilowords.

+sssdi o size

Suggested stack size, in kilowords, for dirty 10 scheduler threads. Valid range is 20-8192 kilowords. The
default suggested stack size is 40 kilowords.

+st bt Bi ndType

Triesto set the scheduler bind type. The same asflag +sbt except how some errors are handled. For more
information, see +sbt .

+sub true|fal se

Enables or disables scheduler utilization balancing of load. By default scheduler utilization balancing is
disabled and instead schedul er compaction of load is enabled, which strivesfor aload distribution that causes
as many scheduler threads as possible to be fully loaded (that is, not run out of work). When scheduler
utilization balancing is enabled, the system instead tries to balance scheduler utilization between schedulers.
That is, strive for equal scheduler utilization on all schedulers.

+sub true is only supported on systems where the runtime system detects and uses a monotonically
increasing high-resolution clock. On other systems, the runtime system fails to start.

+sub trueimplies+scl fal se.Thedifferencebetween+sub trueand+scl fal seisthat+scl
f al se does not try to balance the scheduler utilization.

+swet very_eager | eager | nedi unj |l azy| very_l azy

Sets scheduler wake cleanup threshold. Defaults to medi um Controls how eager schedulers are to be
requesting wakeup because of certain cleanup operations. When a lazy setting is used, more outstanding
cleanup operations can be left undone while a scheduler isidling. When an eager setting is used, schedulers
are more frequently woken, potentially increasing CPU-utilization.

This flag can be removed or changed at any time without prior notice. |

+sws defaul t|| egacy

Sets scheduler wakeup strategy. Default strategy changed in ERTS 5.10 (Erlang/OTP R16A). This strategy
was known as pr oposal in Erlang/OTP R15. Thel egacy strategy was used as default from R13 up to
and including R15.

This flag can be removed or changed at any time without prior notice. |

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 149

erl

+swt very_I| ow | oW nedi unj hi gh| very_hi gh

Sets scheduler wakeup threshold. Defaultsto medi um The threshold determines when to wake up sleeping
schedulers when more work than can be handled by currently awake schedulers exists. A low threshold
causes earlier wakeups, and a high threshold causes later wakeups. Early wakeups distribute work over
multiple schedulers faster, but work does more easily bounce between schedulers.

This flag can be removed or changed at any time without prior notice. |

+swt dcpu very_ | ow | o nedi uni hi gh| very_hi gh
As+swt but affects dirty CPU schedulers. Defaultsto nedi um

Thisflag can be removed or changed at any time without prior notice.

+swtdio very_| ow | o medi un hi gh| very_hi gh
As+swt but affects dirty 10 schedulers. Defaultsto medi um

This flag can be removed or changed at any time without prior notice.

+t size

Sets the maximum number of atoms the virtual machine can handle. Defaults to 1,048,576.
+T Level

Enables modified timing and sets the modified timing level. Valid range is 0-9. The timing of the runtime system

ischanged. A high level usually means agreater change than alow level. Changing the timing can be very useful
for finding timing-related bugs.

Modified timing affects the following:
Process spawning

A process calling spawn, spawn_l i nk, spawn_noni t or, or spawn_opt isscheduled out

immediately after completing the call. When higher modified timing levels are used, the caller also sleeps
for awhile after it is scheduled out.

Context reductions

The number of reductions a process is allowed to use beforeit is scheduled out isincreased or reduced.
Input reductions

The number of reductions performed before checking 1/0 is increased or reduced.

Performance suffers when modified timing is enabled. Thisflag is only intended for testing and debugging.
return_toandreturn_fromtrace messages are lost when tracing on the spawn BIFs.
This flag can be removed or changed at any time without prior notice.

150 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

+v

Verbose.
+V

Makes the emulator print its version number.
+tWw | i | e

Sets the mapping of warning messages for er r or _| ogger . Messages sent to the error logger using one of
the warning routines can be mapped to errors (+W e), warnings (+W wj), or information reports (+W i).
Defaults to warnings. The current mapping can be retrieved using er r or _| ogger : war ni ng_nmap/ 0. For
more information, seeer r or _| ogger : war ni ng_map/ 0 in Kernel.

+zFl ag Val ue
Miscellaneous flags:
+zdbbl size

Setsthe distribution buffer busy limit (di st _buf _busy | i m t)inkilobytes. Valid rangeis1-2097151.
Defaults to 1024.

A larger buffer limit allows processes to buffer more outgoing messages over the distribution. When the
buffer limit has been reached, sending processes will be suspended until the buffer size has shrunk. The
buffer limit is per distribution channel. A higher limit gives lower latency and higher throughput at the
expense of higher memory use.

+zdntgc tine

Sets the delayed node table garbage collection time (del ayed_node_t abl e_gc) in seconds. Vaid
values are either i nf i ni t'y or an integer in the range 0-100000000. Defaults to 60.

Node table entries that are not referred linger in the table for at least the amount of time that this parameter
determines. The lingering prevents repeated deletions and insertions in the tables from occurring.

+zosrl limt

Sets a limit on the amount of outstanding requests made by a system process
orchestrating system wide changes. Valid range of this limit is [1, 134217727]. See
erl ang: system fl ag(out standi ng_systemrequests_linmt, Limt) for more
information.

Environment Variables
ERL_CRASH DUMP

If the emulator needs to write a crash dump, the value of this variable is the filename of the crash dump file. If
the variable is not set, the name of the crash dump fileiser | _cr ash. dunp inthe current directory.

ERL_CRASH_DUWP_NI CE

Unix systems: If the emulator needs to write a crash dump, it uses the value of this variable to set the nice value
for the process, thus lowering its priority. Valid range is 1-39 (higher values are replaced with 39). The highest
value, 39, gives the process the lowest priority.

ERL_CRASH_DUMP_SECONDS

Unix systems: This variable gives the number of seconds that the emulator is allowed to spend writing a crash
dump. When the given number of seconds have elapsed, the emulator is terminated.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 151

erl

ERL_CRASH_DUMP_SECONDS=0
If the variableis set to 0 seconds, the runtime system does not even attempt to write the crash
dump file. It only terminates. Thisisthe default if option - hear t ispassedtoer| and
ERL_CRASH DUMP_SECONDS is hot set.

ERL_CRASH_DUMP_SECONDS=S
If the variable is set to a positive value S, wait for S seconds to complete the crash dump file and then
terminates the runtime system with a SI GALRMsignal.

ERL_CRASH_DUMP_SECONDS=- 1
A negative value causes the termination of the runtime system to wait indefinitely until the crash
dump file has been completly written. Thisis the default if option - hear t isnot passedtoer| and
ERL_CRASH DUMP_SECONDS is hot set.

Seealsoheart (3).
ERL_CRASH_DUMP_BYTES

This variable sets the maximum size of acrash dump file in bytes. The crash dump will be truncated if this limit
is exceeded. If the variable is not set, no size limit is enforced by default. If the variable is set to 0, the runtime
system does not even attempt to write a crash dump file.

Introduced in ERTS 8.1.2 (Erlang/OTP 19.2).
ERL_AFLAGS
The content of this variable is added to the beginning of the command linefor er | .

Flag - ext r aistreated in aspecial way. Itsscope ends at the end of the environment variable content. Arguments
following an - ext r a flag are moved on the command lineinto section - ext r a, that is, the end of the command
linefollowing an - ext r a flag.

ERL ZFLAGS and ERL_FLAGS
The content of these variables are added to the end of the command linefor er | .

Flag- ext r aistreated in aspecial way. Itsscope endsat the end of the environment variable content. Arguments
following an - ext r a flag are moved on the command lineinto section - ext r a, that is, the end of the command
linefollowing an - ext r a flag.

ERL_LIBS

Containsalist of additional library directoriesthat the code server searches for applications and adds to the code
path; seecode(3) .

ERL_EPMD_ADDRESS

Can be set to acomma-separated list of | P addresses, in which case the epnd daemon listens only on the specified
address(es) and on the loopback address (which isimplicitly added to the list if it has not been specified).

ERL_EPMD_PORT

Can contain the port number to use when communicating with eprrd. The default port works fine in most cases.
A different port can be specified to allow nodes of independent clusters to co-exist on the same host. All nodes
in acluster must use the same epnd port number.

Signals
On Unix systems, the Erlang runtime will interpret two types of signals.
S| GUSR1

A Sl GUSR1 signal forces a crash dump.

152 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl

S| GTERM
A S| GTERMwill produce ast op messagetothei ni t process. Thisisequivalenttoai nit: st op/ 0 call.
Introduced in ERTS 8.3 (Erlang/OTP 19.3)

Thesigna SI GUSR2 isreserved for internal usage. No other signals are handled.

Configuration
The standard Erlang/OTP system can be reconfigured to change the default behavior on startup.
The. er | ang startup file
When Erlang/OTP is started, the system searches for afile named . er | ang in the user's home directory.

If an. er | ang fileisfound, it is assumed to contain valid Erlang expressions. These expressions are evaluated
asif they were input to the shell.

A typical . er | ang file contains a set of search paths, for example:

io:format("executing user profile in HOME/.erlang\n",[]).
code:add path("/home/calvin/test/ebin").

code:add path("/home/hobbes/bigappl-1.2/ebin").
io:format(".erlang rc finished\n",[]).

user_default and shell_default

Functionsin the shell that are not prefixed by a module name are assumed to be functional objects (funs), built-
in functions (BIFs), or belong to themoduleuser _def aul t orshel | _defaul t.

To include private shell commands, definethem in amodule user _def aul t and add the following argument
asthefirstlineinthe. er | ang file:

code:load abs("..../user default").
erl
If the contents of . er | ang are changed and a private version of user _def aul t is defined, the Erlang/OTP
environment can be customized. More powerful changes can be made by supplying command-line argumentsin
the startup script er | . For moreinformation, seei ni t (3) .
See Also

epnd(1),erl _primloader(3),erts_alloc(3),init(3),application(3),auth(3),code(3),
erl _boot _server(3),heart(3),net_kernel (3), mke(3)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 153

erlang

erlang

Erlang module

By convention, most Built-In Functions (BIFs) and al predefined types areincluded in this module. Some of the BIFs
and all of the predefined types are viewed more or less as part of the Erlang programming language and are auto-
imported. Thus, it is not necessary to specify the module name. For example, thecallsatom to_I i st (er | ang)
anderl ang: atomto_|ist(erlang) areidentical.

Auto-imported BIFs are listed without module prefix. BIFs listed with module prefix are not auto-imported.

Predefined types are listed in the Predefined datatypes section of this reference manual and in the Types and Function
Specifications section of the Erlang Reference Manual.

BIFs can fail for various reasons. All BIFsfail with reason badar g if they are called with arguments of an incorrect
type. The other reasons are described in the description of each individual BIF.

Some BIFs can be used in guard tests and are marked with "Allowed in guard tests'.

Data Types

Predefined datatypes

any() = any()

All possible Erlang terms. Synonym for t er n{) .

arity() = arity()

The arity of afunction or type.

atom() = atom()

An Erlang atom.

binary() = << : *8>>

An Erlang binary, that is, abitstring with a size divisible by 8.
bitstring() = << : *1>>

An Erlang bitstring.

boolean() = true | false

A boolean value.

byte() = 0..255

A byte of data represented by an integer.

char() = 0..1114111

An ASCII character or a unicode codepoint presented by an integer.
float() = float()

An Erlang float.

function() = function()

An Erlang fun.

identifier() = pid() | port() | reference()
An uniqueidentifier for some entity, for example a process, port or monitor.

154 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

integer() = integer()
An Erlang integer.
iodata() = iolist() | binary()

A binary or list containing bytes and/or iodata. This datatype is used to represent data that is meant to be output using
any 1/0O module. For example: file:write/2 or gen_tcp:send/2.

To convert an iodata() term to binary() you can useiolist_to_binary/2. To transcode a string() or unicode:chardata()
to iodata() you can use unicode;characters to_binary/1.

iolist() =
maybe improper list(byte() | binary() | iolist(),
binary() | [1)

A list containing bytes and/or iodata. This datatype is used to represent data that is meant to be output using any 1/0
module. For example: file:write/2 or gen_tcp:send/2.

In most use cases you want to use iodata() instead of thistype.

list() = list()

An Erlang list containing terms of any type.

list(ContentType) = [ContentType]

An Erlang list containing terms of the type Cont ent Type.

map() = #{any() => any()}

An Erlang map containing any number of key and value associations.

maybe improper list() = maybe improper list(any(), any())

An Erlang list that is not guaranteed to end with a[], and where the list elements can be of any type.

maybe improper list(ContentType, TerminationType) =
maybe improper list(ContentType, TerminationType)

An Erlang list, that is not guaranteed to end with a[], and where the list elements are of the type Cont ent Type.
mfa() = {module(), atom(), arity()}

A three-tuple representing aModul e: Funct i on/ Ari t'y function signature.

module() = atom()

An Erlang module represented by an atom.

neg integer() = integer() =< -1

A negative integer.

nil() = []

The empty list().

no_return() = none()

The type used to show that afunction will never return avalue, that isit will always throw an exception.
node() = atom()

An Erlang node represented by an atom.

non neg integer() = integer() >= 0

A non-negative integer, that is any positive integer or O.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 155

erlang

none() = none()

Thistypeisused to show that afunction will never return avalue; that isit will alwaysthrow an exception. In a spec,
useno_r et urn() forthe sake of clarity.

nonempty binary() = << :8, : *8>>

A binary() that contains some data.

nonempty bitstring() = << :1, _: *1>>
A bitstring() that contains some data.

nonempty improper list(ContentType, TerminationType) =
nonempty improper list(ContentType, TerminationType)

A maybe_improper_list/2 that contains some items.

nonempty list() = [any(), ...]

A list() that contains some items.

nonempty list(ContentType) = [ContentType, ...]
A list(ContentType) that contains some items.

nonempty maybe improper list() =
nonempty maybe improper list(any(), any())

A maybe_improper_list() that contains some items.

nonempty maybe improper list(ContentType, TerminationType) =
nonempty maybe improper list(ContentType, TerminationType)

A maybe_improper_list(ContentType, TerminationType) that contains some items.
nonempty string() = [char(), ...]

A string() that contains some characters.

number() = integer() | float()

An Erlang number.

pid() = pid()

An Erlang process identifier.

port() = port()

An Erlang port identifier.

pos integer() = integer() >=1

An integer greater than zero.

reference() = reference()

An Erlang reference.

string() = [char()]

A character string represented by alist of ASCII characters or unicode codepoints.
term() = any()

All possible Erlang terms. Synonym for any () .

timeout() = infinity | integer() >= 0

A timeout value that can be passed to areceive expression.

156 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

tuple() = tuple()
An Erlang tuple.

Other Datatypes

ext_binary() = binary()

A binary data object, structured according to the Erlang external term format.

ext iovec() = iovec()

A term of typei ovec(), structured according to the Erlang external term format.
iovec() = [binary()]

A list of binaries. This datatype is useful to use together witheni f _i nspect _i ovec.
message queue data() = off heap | on heap

Seeprocess_fl ag(nmessage_queue_data, MD).

monitor option() =
{alias, explicit unalias | demonitor | reply demonitor} |
{tag, term()}

Seenpni tor/ 3.

timestamp() =
{MegaSecs :: integer() >= 0,
Secs :: integer() >= 0,
MicroSecs :: integer() >= 0}

Seeerl ang: ti nest anp/ 0.

time unit() =
integer() >= 1 |
second | millisecond | microsecond | nanosecond | native |
perf counter |
deprecated time unit()

Supported time unit representations:
Part sPerSecond :: integer() >=1

Time unit expressed in parts per second. That is, the time unit equals 1/ Par t sPer Second second.
second

Symbolic representation of the time unit represented by the integer 1.
nmllisecond

Symbolic representation of the time unit represented by the integer 1000.
nm cr osecond

Symbolic representation of the time unit represented by the integer 1000_000.
nanosecond

Symbolic representation of the time unit represented by the integer 2000_000_000.
native

Symbolic representation of the native time unit used by the Erlang runtime system.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 157

erlang

The nat i ve time unit is determined at runtime system start, and remains the same until the runtime system
terminates. If aruntime system is stopped and then started again (even on the same machine), thenat i ve time
unit of the new runtime system instance can differ fromthenat i ve timeunit of the old runtime system instance.

One can get an approximation of the nat i ve time unit by caling er| ang: convert _tine_unit (1,
second, nati ve). Theresult equalsthe number of whole nat i ve time units per second. If the number of
nat i ve time units per second does not add up to a whole number, the result is rounded downwards.

The value of the nat i ve time unit gives you more or less no information about the quality of time values.
It sets a limit for the resolution and for the precision of time values, but it gives no information about the
accuracy of time values. The resolution of the nat i ve time unit and the resolution of time values can differ
significantly.

perf _counter
Symbolic representation of the performance counter time unit used by the Erlang runtime system.

The per f _count er time unit behaves much in the same way asthe nat i ve time unit. That is, it can differ
between runtime restarts. To get values of thistype, call os: perf _counter/ 0.

deprecated_time_unit()
Deprecated symbolic representations kept for backwards-compatibility.

The time_unit/0 type can be extended. To convert time vaues between time units, use
erl ang: convert _tine_unit/3.

deprecated time unit() =
seconds | milli seconds | micro seconds | nano seconds

Thetinme_unit () typealso consist of the following deprecated symbolic time units:

seconds
Same assecond.
mlli_seconds

Sameasm | | i second.
nm cro_seconds
Sameasmni cr osecond.
nano_seconds
Same asnanosecond.
dist handle()
An opague handle identifing a distribution channel.
nif resource()
An opaque handle identifing a NIF resource object .

spawn_opt option() =
link | monitor |
{monitor, MonitorOpts :: [monitor option()1} |
{priority, Level :: priority level()} |
{fullsweep after, Number :: integer() >= 0} |
{min _heap size, Size :: integer() >= 0} |

158 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{min_bin vheap size, VSize :: integer() >= 0} |
{max_heap size, Size :: max heap size()} |
{message queue data, MQD :: message queue data()}

Optionsfor spawn_opt () .
priority level() = low | normal | high | max
Process priority level. For moreinfo seeprocess_flag(priority, Level)
max_heap size() =
integer() >= 0 |
#{size => integer() >= 0,
kill => boolean(),
error logger => boolean()}
Process max heap size configuration. For more info seepr ocess_f | ag(max_heap_si ze, MaxHeapSi ze)
message queue data() = off heap | on _heap

Process message queue data configuration. For moreinformation, seepr ocess_f | ag(message_queue_dat a,

MD)

stacktrace() =
[{module(),
atom(),
arity() | [term()],
[stacktrace extrainfo()]} |
{function(), arity() | [term()], [stacktrace extrainfo()]}]

stacktrace extrainfo() =
{line, integer() >= 1} |
{file, unicode:chardata()} |
{error_info,
#{module => module(), function => atom(), cause => term()}} |
{atom(), term()}

An Erlang stacktrace as described by Errors and Error Handling section in the Erlang Reference Manual.

Exports

abs(Float) -> float()
abs(Int) -> integer() >= 0
Types:
Int = integer()
Returns an integer or float that is the arithmetical absolute value of Fl oat or | nt , for example:

> abs(-3.33).
3.33

> abs(-3).

3

Allowed in guard tests.

erlang:adler32(Data) -> integer() >= 0
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 159

erlang

Data = iodata()

Computes and returns the adler32 checksum for Dat a.

erlang:adler32(0ldAdler, Data) -> integer() >= 0
Types:

OldAdler = integer() >= 0

Data = iodata()

Continues computing the adler32 checksum by combining the previous checksum, O dAdl er , with the checksum
of Dat a.

The following code:

X
Y

erlang:adler32(Datal),
erlang:adler32(X,Data2).

assigns the same valueto Y asthis:

Y = erlang:adler32([Datal,Data2]).

erlang:adler32 combine(FirstAdler, SecondAdler, SecondSize) ->
integer() >= 0
Types:
FirstAdler = SecondAdler = SecondSize = integer() >= 0

Combines two previously computed adler32 checksums. This computation requires the size of the data object for the
second checksum to be known.

The following code:

Y
z

erlang:adler32(Datal),
erlang:adler32(Y,Data2).

assigns the same valueto Z asthis:

erlang:adler32(Datal),
erlang:adler32(Data2),

X
Y
z erlang:adler32 combine(X,Y,iolist size(Data2)).

alias() -> Alias
alias(Opts) -> Alias
Types:
Alias = reference()
Opts = [explicit unalias | replyl]
Create an alias which can be used when sending messages to the process that created the alias. When the alias has been
deactivated, messages sent using the alias will be dropped. An alias can be deactivated using unal i as/ 1. Currently
available optionsfor al i as/ 1:
explicit_unalias

The alias can only be deactivated viaacall tounal i as/ 1. Thisis also the default behaviour if no options are
passed or if al i as/ 0 iscalled.

160 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

reply
The aliaswill be automatically deactivated when areply message sent viathe aliasisreceived. The alias can also
still be deactivated viaacall tounal i as/ 1.

Example:

server() ->
receive
{request, AliasReqld, Request} ->
Result = perform_request(Request),
AliasReqId ! {reply, AliasReqlId, Result}
end,
server().

client(ServerPid, Request) ->

AliasReqId = alias([replyl),

ServerPid ! {request, AliasReqld, Request},

%% Alias will be automatically deactivated if we receive a reply

%% since we used the 'reply' option...

receive

{reply, AliasReqId, Result} -> Result

after 5000 ->
unalias(AliasReqlId),
%% Flush message queue in case the reply arrived
%% just before the alias was deactivated...
receive {reply, AliasReqId, Result} -> Result
after 0 -> exit(timeout)
end

end.

Note that both the server and the client in this example must be executing on at least OTP 24 systems in order for
thisto work.

For more information on process aliases see the Process Aliases section of the Erlang Reference Manual.

erlang:append element(Tuplel, Term) -> Tuple2
Types:
Tuplel = Tuple2 = tuple()
Term = term()
Returnsanew tuplethat has one element morethan Tupl el, and containstheelementsin Tupl el followed by Ter m

asthelast element. Semantically equivalenttol i st _to_tupl e(tuple_to_list(Tuplel) ++ [Terni),
but much faster. Example:

> erlang:append_element({one, two}, three).
{one, two, three}

apply(Fun, Args) -> term()
Types.
Fun = function()
Args = [term()]
Callsafun, passing the elementsin Ar gs as arguments.

If the number of elements in the arguments are known at compile time, the call is better written as Fun(Ar g1,
Arg2, ... ArgN).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 161

erlang

Earlier, Fun could also be specified as{ Modul e, Functi on},equivaenttoappl y(Modul e, Functi on,
Ar gs) . Thisuseisdeprecated and will stop working in a futurerelease.

apply(Module, Function, Args) -> term()
Types:

Module = module()

Function = atom()

Args = [term()]

Returnstheresult of applying Funct i on inModul e to Ar gs. The applied function must be exported from Mbdul e.
The arity of the function isthe length of Ar gs. Example:

> apply(lists, reverse, [[a, b, cl]).
[c,b,al

> apply(erlang, atom_to list, ['Erlang']).
"Erlang"

If the number of arguments are known at compile time, the call is better written as Modul e: Functi on(Ar g1,
Arg2, ..., ArgN).

Failure: er r or _handl er: undefi ned_f uncti on/ 3 iscalledif theapplied function is not exported. The error
handler can be redefined (see pr ocess_f 1 ag/ 2). If error _handl er isundefined, or if the user has redefined
the default er r or _handl er so the replacement module is undefined, an error with reason undef is generated.

atom _to binary(Atom) -> binary()
Types:

Atom = atom()
Thesameasatom to_bi nary (Atom utf8).

atom to binary(Atom, Encoding) -> binary()
Types:
Atom = atom()
Encoding = latinl | unicode | utf8
Returns abinary corresponding to the text representation of At om If Encodi ng isl at i n1, onebyte existsfor each

character in the text representation. If Encodi ng isut f 8 or uni code, the characters are encoded using UTF-8
where characters may require multiple bytes.

Asfrom Erlang/OTP 20, atoms can contain any Unicode character and at om t o_bi nary(Atom | ati nl)
may fail if the text representation for At omcontains a Unicode character > 255.

Example:

> atom _to binary('Erlang', latinl).
<<"Erlang">>

162 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

atom to list(Atom) -> string()
Types:
Atom = atom()
Returns alist of unicode code points corresponding to the text representation of At om for example:

> atom to list('Erlang').
"Erlang"

> atom to list('##').
[20320,22909]

Seeuni code(3) for how to convert the resulting list to different formats.

binary part(Subject, PosLen) -> binary()
Types:
Subject = binary()
PosLen = {Start :: integer() >= 0, Length :: integer()}
Extracts the part of the binary described by PosLen.
Negative length can be used to extract bytes at the end of a binary, for example:

1> Bin = <<1,2,3,4,5,6,7,8,9,10>>.
2> binary part(Bin, {byte size(Bin), -5}).
<<6,7,8,9,10>>

Failure: badar g if PosLen in any way references outside the binary.
St art iszero-based, that is:

1> Bin = <<1,2,3>>
2> binary part(Bin,{0,2}).
<<1,2>>

For details about the PosLen semantics, see bi nar y(3) .
Allowed in guard tests.

binary part(Subject, Start, Length) -> binary()
Types:

Subject = binary()

Start = integer() >= 0

Length = integer()
Thesameasbi nary_part (Subject, {Start, Length}).
Allowed in guard tests.

binary to atom(Binary) -> atom()
Types.
Binary = binary()

Thesameasbi nary_to_atom(Bi nary, utf8).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 163

erlang

binary to atom(Binary, Encoding) -> atom()
Types.

Binary = binary()

Encoding = latinl | unicode | utf8

Returnsthe atom whose text representation isBi nar y. If Encodi ng isut f 8 or uni code, the binary must contain
valid UTF-8 sequences.

Asfrom Erlang/OTP 20, bi nary_t o_at on(Bi nary, utf 8) iscapable of decoding any Unicode character.
Earlier versions would fail if the binary contained Unicode characters > 255.

The number of characters that are permitted in an atom name is limited. The default limits can be found in the
efficiency guide (section Advanced).

There is configurable limit on how many atoms that can exist and atoms are not garbage collected.
Therefore, it is recommended to consider whether bi nary_t o_exi sti ng_at oni 2 is a better option than
bi nary_t o_at onT 2. The default limits can be found in efficiency guide (section Advanced).

Examples:

> binary to atom(<<"Erlang">>, latinl).
'"Erlang’

>‘binaryitoiatom(<<1024/utf8>>, utf8).
B

binary to existing atom(Binary) -> atom()
Types:
Binary = binary()
Thesameasbi nary_to_exi sting_atom(Bi nary, utf8).

binary to existing atom(Binary, Encoding) -> atom()
Types:

Binary = binary()

Encoding = latinl | unicode | utf8
Asbi nary _to_at oni 2, but the atom must exist.

The Erlang system has a configurable limit for the total number of atoms that can exist, and atoms are not garbage
collected. Therefore, it isnot safeto create many atoms from binariesthat come from an untrusted source (for example,
a file fetched from the Internet), for example, using bi nary_t o_at om 2. This function is thus the appropriate
option when the input binary comes from an untrusted source.

164 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

An atom existsin an Erlang system when included in aloaded Erlang module or when created programmatically (for
example, by bi nary_t o_at om 2). See the next note for an example of when an atom exists in the source code for
an Erlang module but not in the compiled version of the same module.

Failure: badar g if the atom does not exist.

Note that the compiler may optimize away atoms. For example, the compiler will rewrite
atomto_list(sone_atom to "some_atont. If that expression is the only mention of the atom
sone_at omin the containing module, the atom will not be created when the module is loaded, and a subsequent
caltobinary_to_exi sting_aton(<<"sone_atont>>, utf8) willfal.

The number of characters that are permitted in an atom name is limited. The default limits can be found in the
efficiency guide (section Advanced).

binary to float(Binary) -> float()
Types:
Binary = binary()
Returns the float whose text representation is Bi nar y, for example:

> binary to float(<<"2.2017764e+0">>).
2.2017764

Thefloat string format is the same as the format for Erlang float literals except for that underscores are not permitted.
Failure: badar g if Bi nary contains abad representation of afloat.

binary to _integer(Binary) -> integer()
Types:
Binary = binary()
Returns an integer whose text representation is Bi nar y, for example:

> binary_to_integer(<<"123">>).
123

bi nary_to_i nt eger/ 1 acceptsthe same string formatsas| i st _to_i nteger/ 1.
Failure: badar g if Bi nary contains abad representation of an integer.

binary to integer(Binary, Base) -> integer()

Types:
Binary = binary()
Base = 2..36

Returns an integer whose text representation in base Base isBi nar y, for example:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 165

erlang

> binary to integer(<<"3FF">>, 16).
1023

bi nary_to_integer/ 2 acceptsthe same string formatsas| i st _to_i nteger/ 2.
Failure: badar g if Bi nary contains abad representation of an integer.

binary to list(Binary) -> [byte()]
Types:
Binary = binary()
Returns alist of integers corresponding to the bytes of Bi nary.

binary to list(Binary, Start, Stop) -> [byte()]
Types.

Binary = binary()

Start = Stop = integer() >=1

1..byte size(Bi nary)

Asbinary_to_list/1,butreturnsalist of integers corresponding to the bytes from position St ar t to position
St op in Bi nary. The positions in the binary are numbered starting from 1.

Note:

The one-based indexing for binaries used by this function is deprecated. New code is to use
bi nary: bin_to_list/3inSTDLIB instead. All functions in module bi nar y consistently use zero-based
indexing.

binary to term(Binary) -> term()
Types.
Binary = ext binary()

Returns an Erlang term that is the result of decoding binary object Bi nar y, which must be encoded according to the
Erlang external term format.

> Bin = term_to binary(hello).
<<131,100,0,5,104,101,168,168,111>>
> hello = binary to term(Bin).
hello

When decoding binaries from untrusted sources, the untrusted source may submit datain away to create resources,
such as atoms and remote references, that cannot be garbage collected and lead to Denial of Service attack. In such
cases, consider using bi nary_t o_t er m 2 with the saf e option.

Seealsotermto_binary/landbinary to terni2.

binary to term(Binary, Opts) -> term() | {term(), Used}
Types.

166 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Binary = ext binary()
Opt = safe | used
Opts = [Opt]
Used = integer() >=1
Asbi nary_to_terni 1, but takes these options:

saf e
Use this option when receiving binaries from an untrusted source.

When enabled, it prevents decoding data that can be used to attack the Erlang runtime. In the event of receiving
unsafe data, decoding failswith abadar g error.

This prevents creation of new atoms directly, creation of new atoms indirectly (as they are embedded in certain
structures, such as process identifiers, refs, and funs), and creation of new external function references. None of
those resources are garbage collected, so unchecked creation of them can exhaust available memory.

> binary to term(<<131,100,0,5,"hello">>, [safe]).
** exception error: bad argument

> hello.

hello

> binary to term(<<131,100,0,5,"hello">>, [safe]).
hello

War ning:

The saf e option ensuresthe datais safely processed by the Erlang runtime but it does not guarantee the data
is safe to your application. You must aways validate data from untrusted sources. If the binary is stored or
transits through untrusted sources, you should also consider cryptographically signing it.

used

Changesthereturn valueto{ Ter m Used} where Used isthe number of bytes actually read from Bi nary.

> Input = <<131,100,0,5,"hello", "world">>.
<<131,100,0,5,104,101,108,1608,111,119,111,114,108,100>>
> {Term, Used} = binary to term(Input, [used]).

{hello, 9}

> split _binary(Input, Used).
{<<131,100,0,5,104,101,108,108,111>>, <<"world">>}

Failure: badar g if saf e is specified and unsafe data is decoded.
Seeadsotermto _binary/1l,binary to term1,andlist_to_existing atonil.

bit size(Bitstring) -> integer() >= 0
Types:
Bitstring = bitstring()
Returns an integer that isthe sizein bitsof Bi t st ri ng, for example:

> bit size(<<433:16,3:3>>).
19

> bit size(<<1,2,3>>).

24

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 167

erlang

Allowed in guard tests.

bitstring to list(Bitstring) -> [byte() | bitstring()]
Types:
Bitstring = bitstring()
Returnsalist of integers corresponding to the bytesof Bi t st ri ng. If the number of bitsin the binary isnot divisible
by 8, the last element of thelist isabitstring containing the remaining 1-7 bits. Examples:

> bitstring to list(<<433:16>>).
[1,177]

> bitstring to list(<<433:16,3:3>>).
[1,177,<<3:3>>]

erlang:bump reductions(Reductions) -> true
Types:
Reductions = integer() >=1
This implementation-dependent function increments the reduction counter for the calling process. In the Beam
emulator, the reduction counter is normally incremented by one for each function and BIF call. A context switch is

forced when the counter reaches the maximum number of reductions for a process (4000 reductions in Erlang/OTP
19.2 and later).

This BIF can be removed in a future version of the Beam machine without prior warning. It is unlikely to be
implemented in other Erlang implementations.

byte size(Bitstring) -> integer() >= 0
Types.
Bitstring = bitstring()

Returns an integer that is the number of bytes needed to contain Bi t st ri ng. That is, if the number of bits in
Bi t st ri ng isnot divisible by 8, the resulting number of bytesis rounded up. Examples:

> byte size(<<433:16,3:3>>).
3

> byte size(<<1,2,3>>).
3

Allowed in guard tests.

erlang:cancel timer(TimerRef) -> Result
Types:
TimerRef = reference()
Time = integer() >= 0
Result = Time | false
Cancelsatimer. Thesameascalinger | ang: cancel _timer(TinerRef, []).

168 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erlang:cancel timer(TimerRef, Options) -> Result | ok
Types.
TimerRef = reference()
Async = Info = boolean()
Option = {async, Async} | {info, Info}
Options = [Option]
Time = integer() >= 0
Result = Time | false
Cancels a timer that has been created by erl ang: start _tinmer or erl ang: send_after. Ti mer Ref
identifies the timer, and was returned by the BIF that created the timer.
Options:
{async, Async}
Asynchronousreguest for cancellation. Async defaultstof al se, which causesthe cancellation to be performed
synchronously. When Async is set to t r ue, the cancel operation is performed asynchronously. That is,

cancel _timer () sendsan asynchronous request for cancellation to the timer service that manages the timer,
and then returns ok.

{info, Info}

Requestsinformation about the Resul t of the cancellation. | nf o defaultstot r ue, which meansthe Resul t
isgiven. When | nf o issettof al se, no information about the result of the cancellation is given.

e When Async isfal se: if Infoistrue, the Resul t isreturned by erl| ang: cancel _tinmer().
otherwise ok isreturned.

e When Async istrue: if I nfo istrue, a message on the form {cancel _ti ner, Ti mer Ref,
Resul t} issenttothecaller of erl ang: cancel _ti mer () when the cancellation operation has been
performed, otherwise no message is sent.

More Opt i ons may be added in the future.
If Resul t isaninteger, it represents the time in milliseconds left until the canceled timer would have expired.

If Resul t isf al se, atimer corresponding to Ti ner Ref could not be found. This can be either because the timer
had expired, aready had been canceled, or because Ti ner Ref never corresponded to atimer. Even if the timer had
expired, it does not tell you if the time-out message has arrived at its destination yet.

The timer service that manages the timer can be co-located with another scheduler than the scheduler that the
calling process is executing on. If so, communication with the timer service takes much longer time than if it is
located locally. If the calling processisin critical path, and can do other things while waiting for the result of this
operation, or is not interested in the result of the operation, you want to use option { async, true}.If using
option{ async, fal se}, thecalling process blocks until the operation has been performed.

Seeasoerl ang: send_after/4,erlang:start_tinmer/4,anderl ang: read_ti ner/ 2.

ceil(Number) -> integer()
Types.
Number = number()

Returns the smallest integer not less than Nunber . For example:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 169

erlang

> ceil(5.5).
6

Allowed in guard tests.

check old code(Module) -> boolean()
Types.

Module = module()
Returnst r ue if Mbdul e has old code, otherwisef al se.

Seealsocode(3).

check process code(Pid, Module) -> CheckResult
Types.

Pid = pid()

Module = module()

CheckResult = boolean()

Thesameascheck _process_code(Pid, Mdule, [])

check process code(Pid, Module, OptionList) -> CheckResult | async
Types:
Pid = pid()
Module = module()
RequestId = term()
Option = {async, RequestId} | {allow gc, boolean()}
OptionList = [Option]
CheckResult = boolean() | aborted
Checksif the node local process identified by Pi d executes old code for Modul e.
Options:
{all ow_gc, bool ean()}

Determines if garbage collection is alowed when performing the operation. If {al | ow _gc, fal se} is
passed, and a garbage collection is needed to determine the result of the operation, the operation is aborted
(see information on CheckResul t below). The default is to allow garbage collection, that is, { al | ow_gc,
true}.

{async, Request|d}

Thefunctioncheck _process_code/ 3 returnsthevalueasync immediately after the request has been sent.
When the request has been processed, the process that called this function is passed a message on the form
{check_process_code, Requestld, CheckResult}.

If Pi d equalssel f () ,andnoasync option hasbeen passed, the operation is performed at once. Otherwise arequest
for the operation is sent to the process identified by Pi d, and is handled when appropriate. If no async option has
been passed, the caller blocks until CheckResul t isavailable and can be returned.

CheckResul t informs about the result of the request as follows:

170 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

true

The process identified by Pi d executes old code for Modul e. That is, the current call of the process executes
old code for this module, or the process has references to old code for this module, or the process contains funs
that references old code for this module.

fal se
The process identified by Pi d does not execute old code for Mbdul e.
aborted

The operation was aborted, as the process needed to be garbage collected to determine the operation result, and
the operation was requested by passing option{ al | ow_gc, fal se}.

Up until ERTS version 8.*, the check process code operation checks for al types of references to the old code.
That is, direct references (e.g. return addresses on the process stack), indirect references (f unsin process context),
and references to literals in the code.

As of ERTS version 9.0, the check process code operation only checks for direct references to the code. Indirect
references viaf unswill be ignored. If such f uns exist and are used after a purge of the old code, an exception
will be raised upon usage (same as the case when the f un is received by the process after the purge). Literals will
be taken care of (copied) at alater stage. Thisbehavior can as of ERTS version 8.1 be enabled when building OTP,
and will automatically be enabled if dirty scheduler support is enabled.

Seealsocode(3).
Failures:

badar g

If Pi d isnot anodelocal processidentifier.
badar g

If Mbdul e isnot an atom.
badar g

If Opti onLi st isaninvalidlist of options.

erlang:convert time unit(Time, FromUnit, ToUnit) -> ConvertedTime
Types:

Time = ConvertedTime = integer()

FromUnit = ToUnit = time unit()

ConvertstheTi me valueof timeunit Fr ormruni t tothecorresponding Conver t edTi ne valueof timeunit ToUni t .
Theresult is rounded using the floor function.

Y ou can lose accuracy and precision when converting between time units. To minimize such loss, collect all data
at nat i ve time unit and do the conversion on the end result.

erlang:crc32(Data) -> integer() >= 0
Types.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 171

erlang

Data = iodata()
Computes and returns the crc32 (IEEE 802.3 style) checksum for Dat a.

erlang:crc32(0ldCrc, Data) -> integer() >= 0
Types:

0ldCrc = integer() >= 0

Data = iodata()

Continues computing the crc32 checksum by combining the previous checksum, A dCr ¢, with the checksum of
Dat a.

The following code:

X
Y

erlang:crc32(Datal),
erlang:crc32(X,Data2).

assigns the same valueto Y asthis:

Y = erlang:crc32([Datal,Data2]).

erlang:crc32 combine(FirstCrc, SecondCrc, SecondSize) ->
integer() >= 0
Types:
FirstCrc = SecondCrc = SecondSize = integer() >= 0

Combines two previously computed crc32 checksums. This computation requires the size of the data object for the
second checksum to be known.

The following code:

Y
z

erlang:crc32(Datal),
erlang:crc32(Y,Data2).

assigns the same valueto Z asthis:

erlang:crc32(Datal),
erlang:crc32(Data2),

X
Y
z erlang:crc32 combine(X,Y,iolist size(Data2)).

date() -> Date
Types:
Date = calendar:date()
Returnsthe current date as{ Year, Mont h, Day}.

The time zone and Daylight Saving Time correction depend on the underlying OS. The return value is based on the
OS System Time. Example

> date().
{1995,2,19}

erlang:decode packet(Type, Bin, Options) ->
{ok, Packet, Rest} |
{more, Length} |

172 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{error, Reason}
Types.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 173

erlang

Type =
raw | © | 1 | 2 | 4 | asnl | cdr | sunrm | fcgi | tpkt |
line | http | http _bin | httph | httph_bin
Bin = binary()
Options = [Opt]
Opt =
{packet size, integer() >= 0} |
{line length, integer() >= 0}
Packet = binary() | HttpPacket
Rest = binary()

Length = integer() >= 0 | undefined
Reason = term()
HttpPacket =

HttpRequest | HttpResponse | HttpHeader | http eoh | HttpError
HttpRequest = {http request, HttpMethod, HttpUri, HttpVersion}

HttpResponse =
{http response, HttpVersion, integer(), HttpString}

HttpHeader =
{http_header,
integer(),
HttpField,
UnmodifiedField :: HttpString,
Value :: HttpString}

HttpError = {http error, HttpString}

HttpMethod =
'OPTIONS' | 'GET' | 'HEAD' | 'POST' | 'PUT' | 'DELETE' |
'TRACE' | HttpString
HttpUri =
I*I
{absoluteURI,
http | https,
Host :: HttpString,
Port :: inet:port number() | undefined,

Path :: HttpString} |
{scheme, Scheme :: HttpString, HttpString} |
{abs path, HttpString} |

HttpString
HttpVersion =
{Major :: integer() >= 0, Minor :: integer() >= 0}
HttpField =
‘Cache-Control' | 'Connection' | 'Date' | 'Pragma’ |
'Transfer-Encoding' | 'Upgrade' | 'Via' | 'Accept' |
"Accept-Charset' | 'Accept-Encoding' | 'Accept-Language' |
'Authorization' | 'From' | 'Host' | 'If-Modified-Since' |
'If-Match' | 'If-None-Match' | 'If-Range' |
'If-Unmodified-Since' | 'Max-Forwards' |
'Proxy-Authorization' | 'Range' | 'Referer' | 'User-Agent' |
'Age' | 'Location' | 'Proxy-Authenticate' | 'Public' |
'Retry-After' | 'Server' | 'Vary' | 'Warning' |

174 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

'"Www-Authenticate' | 'Allow' | 'Content-Base' |
'Content-Encoding' | 'Content-Language' | 'Content-Length' |
‘Content-Location' | 'Content-Md5' | 'Content-Range' |
'Content-Type' | 'Etag' | 'Expires' | 'Last-Modified' |
'Accept-Ranges' | 'Set-Cookie' | 'Set-Cookie2' |
'X-Forwarded-For' | 'Cookie' | 'Keep-Alive' |

'Proxy-Connection' | HttpString
HttpString = string() | binary()

Decodes the binary Bi n according to the packet protocol specified by Type. Similar to the packet handling done by
sockets with option { packet , Type}.

If an entire packet is contained in Bin, it is returned together with the remainder of the binary as
{ ok, Packet , Rest }.

If Bi n does not contain the entire packet, { nor e, Lengt h} isreturned. Lengt h is either the expected total size
of the packet, or undef i ned if the expected packet size is unknown. decode_packet can then be caled again
with more data added.

If the packet does not conform to the protocol format, { er r or , Reason} isreturned.
Types:
raw | O
No packet handling is done. The entire binary is returned unlessit is empty.
1] 2| 4

Packets consist of a header specifying the number of bytes in the packet, followed by that number of bytes. The
length of the header can be one, two, or four bytes; the order of the bytes is big-endian. The header is stripped
off when the packet is returned.

line
A packet is aline-terminated by a delimiter byte, default is the latin-1 newline character. The delimiter byte is
included in the returned packet unless the line was truncated according to option | i ne_| engt h.
asnl | cdr | sunrm| fcgi | tpkt
The header isnot stripped off.
The meanings of the packet types are as follows:

asnl - ASN.1BER
sunr m- Sun's RPC encoding
cdr - CORBA (GIOP 1.1)
fcgi - Fast CGI
t pkt - TPKT format [RFC1006]
http | httph | http_bin | httph_bin

The Hypertext Transfer Protocol. The packets are returned with the format according to Ht t pPacket described
earlier. A packet is either a request, a response, a header, or an end of header mark. Invalid lines are returned
asHtt pError.

Recognized request methods and header fields are returned as atoms. Others are returned as strings. Strings of
unrecognized header fields are formatted with only capital lettersfirst and after hyphen characters, for example,
" Sec- Websocket - Key" . Header field names are aso returned in Unnodi f i edFi el d as strings, without
any conversion or formatting.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 175

erlang

The protocol type ht t p is only to be used for the first line when an Ht t pRequest or an Ht t pResponse
is expected. The following calls are to use ht t ph to get Ht t pHeader suntil ht t p_eoh is returned, which
marks the end of the headers and the beginning of any following message body.

Thevariantsht t p_bi nand ht t ph_bi n return strings (Ht t pSt r i ng) as binariesinstead of lists.

Options:

{packet size, integer() >= 0}
Sets the maximum allowed size of the packet body. If the packet header indicates that the length of the packet is
longer than the maximum allowed length, the packet is considered invalid. Defaults to 0, which means no size
limit.

{l'ine_length, integer() >= 0}
For packet typel i ne, lineslonger than the indicated length are truncated.

Option i ne_| ength also applies to htt p* packet types as an aias for option packet _si ze if
packet _si ze itself isnot set. Thisuseis only intended for backward compatibility.

{l'ine_delimter, 0 =< byte() =< 255}
For packet typel i ne, setsthe delimiting byte. Default isthe latin-1 character $\ n.
Examples:

> erlang:decode packet(1l,<<3,"abcd">>,[1]).
{ok,<<"abc">>,<<"d">>}

> erlang:decode packet(1l,<<5,"abcd">>,[1]).
{more, 6}

erlang:delete element(Index, Tuplel) -> Tuple2
Types:

Index = integer() >=1

1..tuple size(Tuplel)

Tuplel = Tuple2 = tuple()

Returns a new tuple with element at | ndex removed from tuple Tupl el, for example:

> erlang:delete element(2, {one, two, three}).
{one, three}

delete module(Module) -> true | undefined
Types.
Module = module()

Makesthe current code for Mbdul e become old code and deletes all references for this module from the export table.
Returnsundef i ned if the module does not exist, otherwiset r ue.

‘ This BIF isintended for the code server (see code(3)) and is not to be used elsewhere. ‘

Failure: badar g if there already is an old version of Mbdul e.

176 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

demonitor(MonitorRef) -> true
Types.
MonitorRef = reference()

If Moni t or Ref is areference that the calling process obtained by calling moni t or / 2, this monitoring is turned
off. If the monitoring is already turned off, nothing happens.

Oncedenoni t or (Moni t or Ref) hasreturned, itisguaranteedthatno{' DOWN , MonitorRef, , , '}
message, because of the monitor, will be placed in the caller message queue in the future. However, a{' DOV ,
MonitorRef, _, _, _} messagecan have been placed in the caller message queue beforethe call. It istherefore

usually advisable to remove such a' DOAN' message from the message queue after monitoring has been stopped.
denoni t or (Moni torRef, [flush]) can be used instead of denoni t or (Moni t or Ref) if this cleanup
iswanted.

Before Erlang/OTP R11B (ERTS 5.5) denoni t or / 1 behaved completely asynchronously, that is, the monitor
was active until the "demonitor signal" reached the monitored entity. This had one undesirable effect. Y ou could
never know when you were guaranteed not to receive a DOWN message because of the monitor.

The current behavior can be viewed as two combined operations: asynchronously send a"demonitor signal" to the
monitored entity and ignore any future results of the monitor.

Failure: Itisan error if Moni t or Ref refersto amonitoring started by another process. Not all such cases are cheap
to check. If checking is cheap, the call failswith badar g, for exampleif Moni t or Ref isaremote reference.

demonitor(MonitorRef, OptionList) -> boolean()

Types:
MonitorRef = reference()
OptionList = [Option]

Option = flush | info
Thereturned valueist r ue unlessi nf o ispart of Opt i onLi st .
denoni tor (Moni tor Ref, []) isequivaenttodenonitor(MnitorRef).
Options:
flush

Removes(one){ , MonitorRef, , , _} message, if thereisone, from the caller message queue after
monitoring has been stopped.

Calingdenoni t or (Moni tor Ref, [flush]) isequivalent to thefollowing, but more efficient:

demonitor(MonitorRef),
receive
{ _, MonitorRef, , , } ->
true
after 0 ->
true
end

info

The returned value is one of the following:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 177

erlang

true

The monitor was found and removed. In this case, no' DOAN' message corresponding to this monitor has
been delivered and will not be delivered.

fal se

The monitor was not found and could not be removed. This probably because someone aready has placed
a' DOAN' message corresponding to this monitor in the caller message queue.

If option i nf o iscombined with option f | ush, f al se isreturned if aflush was needed, otherwiset r ue.

More options can be added in a future release.

Failures:

badar g

If Opti onLi st isnotalist.
badar g

If Opti onisaninvalid option.
badar g

The samefailure asfor denoni t or / 1.

disconnect node(Node) -> boolean() | ignored
Types:
Node = node()

Forcesthe disconnection of anode. This appearsto the node Node asif thelocal node has crashed. ThisBIFismainly
used in the Erlang network authentication protocols.

Returnst r ue if disconnection succeeds, otherwisef al se. If theloca nodeisnot aive, i gnor ed is returned.

| This function may return before nodedown messages have been delivered. |

erlang:display(Term) -> true
Types:
Term = term()
Prints atext representation of Ter mon the standard output.

This BIF isintended for debugging only.

erlang:dist ctrl get data(DHandle) -> {Size, Data} | Data | none
Types:

178 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Size = integer() >= 0
DHandle = dist handle()
Data = iovec()
Get distribution channel data from the local node that is to be passed to the remote node. The distribution channel is

identified by DHandl e. If nodataisavailable, theatom none isreturned. One can request to beinformed by amessage
when more datais available by callinger | ang: di st _ctrl _get _data_notifi cati on(DHandl e).

The returned value when there are data available depends on the value of the get _si ze option configured on the
distribution channel identified by DHandl e. For more information see the documentation of the get _si ze option
fortheerl ang: di st _ctrl _set opt/ 3 function.

Only the processregistered as distribution controller for the distribution channel identified by DHandl e isallowed
to call this function.

Thisfunction is used when implementing an alternative distribution carrier using processes as distribution controllers.
DHandl e is retrived via the calback f _handshake_conpl et e. More information can be found in the
documentation of ERTS User's Guide # How to implement an Alternative Carrier for the Erlang Distribution #
Distribution Module.

erlang:dist ctrl get opt(DHandle, Opt :: get size) -> Value
Types:

DHandle = dist handle()

Value = boolean()

Returnsthevalue of theget _si ze option on the distribution channel identified by DHandl e. For more information
see the documentation of theget _si ze optionfor theer | ang: di st _ctrl _set opt/ 3 function.

Only the processregistered as distribution controller for the distribution channel identified by DHandl e isallowed
to call this function.

Thisfunction is used when implementing an alternative distribution carrier using processes as distribution controllers.
DHandl e is retrived via the calback f _handshake_conpl et e. More information can be found in the
documentation of ERTS User's Guide # How to implement an Alternative Carrier for the Erlang Distribution #
Distribution Module.

erlang:dist ctrl get data notification(DHandle) -> ok
Types:
DHandle = dist handle()
Request naotification when more data is available to fetch using er | ang: di st _ctrl _get dat a(DHandl e)
for the distribution channel identified by DHandl e. When more data is present, the caller will be sent the message

di st _dat a. Once adi st _dat a messages has been sent, no more di st _dat a messages will be sent until the
dist _ctrl _get data notification/ 1 functionhasbeen caled again.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 179

erlang

Only the processregistered as distribution controller for the distribution channel identified by DHandl e isallowed
to call this function.

Thisfunction is used when implementing an alternative distribution carrier using processes as distribution controllers.
DHandl e is retrived via the calback f _handshake_conpl et e. More information can be found in the
documentation of ERTS User's Guide # How to implement an Alternative Carrier for the Erlang Distribution #
Distribution Module.

erlang:dist ctrl input handler(DHandle, InputHandler) -> ok
Types:
DHandle = dist handle()
InputHandler = pid()
Register an aternate input handler process for the distribution channel identified by DHandl e. Oncethisfunction has

been called, | nput Handl er isthe only processalowedtocall er| ang: di st _ctrl _put dat a(DHandl e,
Dat a) with the DHandl e identifing this distribution channel.

Only the processregistered as distribution controller for the distribution channel identified by DHandl e isallowed
to call this function.

Thisfunction is used when implementing an alternative distribution carrier using processes as distribution controllers.
DHandl e is retrived via the calback f _handshake_conpl et e. More information can be found in the
documentation of ERTS User's Guide # How to implement an Alternative Carrier for the Erlang Distribution #
Distribution Module.

erlang:dist ctrl put data(DHandle, Data) -> ok
Types:

DHandle = dist handle()

Data = iodata()

Deliver distribution channel data from a remote node to the local node.

Only the process registered as distribution controller for the distribution channel identified by DHandl e
is dlowed to call this function unless an alternate input handler process has been registered using
erl ang: di st _ctrl _i nput _handl er (DHandl e, | nput Handl er) . If an alternate input handler has
been registered, only the registered input handler processis allowed to call this function.

Thisfunction is used when implementing an alternative distribution carrier using processes as distribution controllers.
DHandl e is retrived via the calback f _handshake_conpl et e. More information can be found in the
documentation of ERTS User's Guide # How to implement an Alternative Carrier for the Erlang Distribution #
Distribution Module.

erlang:dist ctrl set opt(DHandle, Opt :: get size, Value) ->

180 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Oldvalue
Types.
DHandle = dist handle()
Value = OldValue = boolean()

Setsthe value of theget _si ze option on the distribution channel identified by DHandl e. This option controls the
return value of callsto erlang:dist_ctrl_get data(DHandle) where DHandl e equals DHandl e used when setting this
option. Whentheget _si ze optioniis:

fal se
and there are distribution data available, acal toer | ang: di st _ctrl _get dat a(DHandl e) will just
return Dat a to pass over the channel. Thisisthe default value of theget _si ze option.

true
and there are distribution data available, acal toer | ang: di st _ctrl _get dat a(DHandl e€) will return
Dat a to pass over the channel aswell asthe Si ze of Dat a in bytes. Thisisreturned as atuple on the form
{Si ze, Data}.

All options are set to default when a channel is closed.

Only the processregistered as distribution controller for the distribution channel identified by DHandl e isallowed
to call this function.

Thisfunction is used when implementing an alternative distribution carrier using processes as distribution controllers.
DHandl e is retrived via the callback f _handshake_conpl et e. More information can be found in the
documentation of ERTS User's Guide # How to implement an Alternative Carrier for the Erlang Distribution #
Distribution Module.

element (N, Tuple) -> term()
Types:
N = integer() >=1
1..tuple size(Tuple)
Tuple = tuple()
Returns the Nth element (numbering from 1) of Tupl e, for example:
; element (2, {a, b, c}).

Allowed in guard tests.

erase() -> [{Key, Val}]
Types:
Key = Val = term()

Returns the process dictionary and deletesit, for example:
> put(keyl, {1, 2, 3}),
put(key2, [a, b, cl),

erase().
[{keyl,{1,2,3}},{key2,[a,b,c]}]

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 181

erlang

erase(Key) -> Val | undefined
Types.
Key = Val = term()

Returns the value Val associated with Key and deletes it from the process dictionary. Returns undef i ned if no
valueisassociated with Key . The average time complexity for the current implementation of thisfunctionis O(1) and
the worst case time complexity is O(N), where N is the number of items in the process dictionary. Example:

> put(keyl, {merry, lambs, are, playing}),
X = erase(keyl),

{X, erase(keyl)}.

{{merry, lambs,are,playing},undefined}

error(Reason) -> no return()
Types:
Reason = term()

Raises an exception of classer r or with the reason Reason. As evaluating this function causes an exception to be
thrown, it has no return value.

The intent of the exception class er r or isto signal that an unexpected error has happened (for example, a function
is called with a parameter that has an incorrect type). See the guide about errors and error handling for additional
information. Example:

> catch error(foobar).
{'EXIT',{foobar, [{shell,apply fun,3,
[{file, "shell.erl"},{line,906}1},

{erl eval,do apply,6,[{file,"erl eval.erl"},{line,677}1},
{erl eval,expr,5,[{file,"erl eval.erl"},{line,430}1},
{shell,exprs,7,[{file, "shell.erl"},{line,687}1},
{shell,eval exprs,7,[{file,"shell.erl"},{line,642}1},
{shell,eval loop,3,[{file,"shell.erl"},{line,627}1}1}}

error(Reason, Args) -> no_return()
Types:
Reason = term()
Args = [term()] | none
Raises an exception of class er r or with the reason Reason. Ar gs is expected to be the list of arguments for the
current function or theatomnone. If itisalist, it isused to provide the arguments for the current function in the stack

back-trace. If it isnone, the arity of the calling function is used in the stacktrace. As evaluating this function causes
an exception to be raised, it has no return value.

The intent of the exception class er r or isto signal that an unexpected error has happened (for example, a function
is called with a parameter that has an incorrect type). See the guide about errors and error handling for additional
information. Example:

test.erl:

-module(test).
-export([example fun/2]).

example fun(Al, A2) ->
erlang:error(my error, [Al, A2]).

182 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Erlang shell:

6> c(test).
{ok, test}
7> test:example fun(argl,"this is the second argument").
** exception error: my error
in function test:example fun/2
called as test:example fun(argl,"this is the second argument")

error(Reason, Args, Options) -> no _return()
Types.
Reason = term()
Args = [term()] | none
Options = [Option]
Option = {error _info, ErrorInfoMap}
ErrorInfoMap =
#{cause => term(), module => module(), function => atom()}

Raises an exception of class er r or with the reason Reason. Ar gs is expected to be the list of arguments for the
current function or theatom none. If itisalist, it isused to provide the arguments for the current function in the stack
back-trace. If it isnone, the arity of the calling function is used in the stacktrace. As evaluating this function causes
an exception to be raised, it has no return value.

If theer r or _i nf o optionisgiven, theEr r or | nf oMap will beinserted into the stacktrace. The information given
intheEr r or | nf oMap istobeused by error formatterssuchaser | _er r or to provide more context around an error.

Thedefault modul e of theEr r or | nf oMap isthemodulethat thecall toer r or / 3 ismade. Thedefaultf unct i on
isformat _error.Seef ormat _error/ 2 for more details on how this Module:Function/2 is to be used

The intent of the exception class er r or isto signal that an unexpected error has happened (for example, a function
is called with a parameter that has an incorrect type). See the guide about errors and error handling for additional
information.

exit(Reason) -> no return()
Types:
Reason = term()

Raises an exception of class exi t with exit reason Reason. As evaluating this function causes an exception to be
raised, it has no return value.

The intent of the exception class exi t isthat the current process should be stopped (for example when a message
telling a process to stop is received).

This function differ fromerror/ 1, 2, 3 by causing an exception of a different class and by having a reason that
does not include the list of functions from the call stack.

See the guide about errors and error handling for additional information.

Example:

> exit(foobar).

** exception exit: foobar
> catch exit(foobar).
{'EXIT', foobar}

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 183

erlang

If aprocesscallsexi t (ki | I') and doesnot catch the exception, it will terminate with exit reasonki | | and also
emit exit signals with exit reason ki | | (not ki | | ed) to al linked processes. Such exit signals with exit reason
ki Il can be trapped by the linked processes. Note that this means that signals with exit reason ki | | behave
differently depending on how they are sent because the signal will be untrappable if a process sends such asignal
to another processwith er | ang: exi t/ 2.

exit(Pid, Reason) -> true
Types:
Pid = pid() | port()
Reason = term()
Sends an exit signal with exit reason Reason to the process or port identified by Pi d.
Thefollowing behavior appliesif Reason isany term, except nor mal orki | | ,and Pistheprocessor port identified
by Pi d:
« If Pisnot trapping exits, P exits with exit reason Reason.
e If Pistrapping exits, the exit signal istransformed intoamessage{' EXI T', From Reason},whereFrom
isthe process identifier of the process that sent the exit signal, and delivered to the message queue of P.

The following behavior appliesif Reason istheterm nor mal and Pi d isthe identifier of a process P which is not
the same as the process that invoked er | ang: exi t (Pi d, nornmal) (the behavior when a process sends a signal
with thenor mal reason to itself is described in the warning):

« |f Pistrapping exits, the exit signal istransformed intoamessage{' EXI T', From nor nal }, where
Fr omisthe process identifier of the process that sent the exit signal, and delivered to P's message queue.

* Thesigna has no effect if P isnot trapping exits.

If Reason istheatomki | |, that is, if exit (Pid, kill) iscaled, an untrappable exit signal is sent to the
process that is identified by Pi d, which unconditionally exits with exit reason ki | | ed. The exit reason is changed
fromki I | toki || ed tohinttolinked processesthat thekilled processgot killedby acall toexi t (Pid, kill).

The functions erl ang: exit/1 and erl ang: exit/ 2 are named similarly but provide very different
functionalities. Theer | ang: exi t / 1 function should be used when theintent isto stop the current process while
erl ang: exi t/ 2 should be used when the intent is to send an exit signal to another process. Note also that
erl ang: exi t/ 1 raises an exception that can be caught whileer | ang: exi t / 2 does not cause any exception
to beraised.

184 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

The only scenario that has not been covered by the description above is when a process P sends an exit signal
with reason nor mal to itself, that iser| ang: exi t (sel f (), normal). The behavior in this scenario is
asfollows:

» |If Pistrapping exits, the exit signa is transformed into amessage{' EXI T', From nor mal }, where
Fr omis P's process identifier, and delivered to P's message queue.

» Pexitswith reason nor nal if Pisnot trapping exits.

Note that the behavior described above is different from when a process sends an exit signal with reason nor al
to another process. Thisis arguably strange but this behavior is kept for backward compatibility reasons.

erlang:external size(Term) -> integer() >= 0
Types:
Term = term()

Calculates, without doing the encoding, the maximum byte size for aterm encoded in the Erlang external term format.
The following condition applies aways.

> Sizel = byte size(term to binary()),
> Size2 = erlang:external size(),

> true = Sizel =< Size2.

true

Thisisequivalent to acall to:
erlang:external size(Term, [])

erlang:external size(Term, Options) -> integer() >= 0

Types:
Term = term()
Options = [{minor version, Version :: integer() >= 0}]

Calculates, without doing the encoding, the maximum byte size for aterm encoded in the Erlang external term format.
The following condition applies aways:

> Sizel = byte size(term to binary(,)),
> Size2 erlang:external size(,),

> true = Sizel =< Size2.

true

Option { m nor _versi on, Version} specifies how floats are encoded. For a detailed description, see
termto_binary/ 2.

float (Number) -> float()
Types:
Number = number()
Returns afloat by converting Nunber to afloat, for example:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 185

erlang

> float(55).
55.0

Allowed in guard tests.

If used on the top level in a guard, it tests whether the argument is a floating point number; for clarity, use
is_float/1instead.

When f | oat/ 1 isused in an expression in a guard, such as'f | oat (A) == 4. 0', it converts a number as
described earlier.

float to binary(Float) -> binary()
Types:
Float = float()
Thesameasfl oat _to_binary(Float,[{scientific,20}]).

float to binary(Float, Options) -> binary()
Types:

Float = float()

Options = [Option]

Option =
{decimals, Decimals :: 0..253} |
{scientific, Decimals :: 0..249} |
compact

Returns a binary corresponding to the text representation of Fl oat using fixed decimal point formatting. Opt i ons
behavesin the sameway asfl oat _to_| i st/ 2. Examples:

> float to binary(7.12, [{decimals, 4}]).
<<"7.1200">>

> float to binary(7.12, [{decimals, 4}, compact]).
<<"7.12">>

> float_to binary(7.12, [{scientific, 3}]).
<<"7.120e+00">>

float to list(Float) -> string()
Types:

Float = float()
Thesameasfl oat _to_list(Float,[{scientific,20}]).

float to list(Float, Options) -> string()
Types:

186 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Float = float()
Options = [Option]

Option =
{decimals, Decimals :: 0..253} |
{scientific, Decimals :: 0..249} |
compact

Returns a string corresponding to the text representation of Fl oat using fixed decimal point formatting.

Available options:

e |If option deci mal s is specified, the returned value contains at most Deci mal s number of digits past the
decimal point. If the number does not fit in the internal static buffer of 256 bytes, the function throws badar g.

« Ifoptionconpact isspecified, thetrailing zerosat the end of thelist aretruncated. Thisoptionisonly meaningful
together with option deci mal s.

» If optionsci enti fic is specified, the float is formatted using scientific notation with Deci mal s digits of
precision.
e |fOptionsis[],thefunctionbehavesasfl oat _to |ist/1.

Examples:

> float to list(7.12, [{decimals, 4}]).

"7.1200"

> float to list(7.12, [{decimals, 4}, compactl]).
"7.12"

> float to list(7.12, [{scientific, 3}1).
"7.120e+00"

> float to list(0.1+0.2)
"3.00000000000000044409e-01"

In the last example, fl oat _to_li st (0. 1+0.2) evaluates to " 3. 00000000000000044409e-01". The
reason for thisis explained in Representation of Floating Point Numbers.

floor(Number) -> integer()
Types:
Number = number()
Returns the largest integer not greater than Nunber . For example:

> floor(-10.5).
-11

Allowed in guard tests.

erlang:fun_info(Fun) -> [{Item, Info}l]
Types:
Fun = function()
Item =
arity | env | index | name | module | new _index | new uniq |
pid | type | uniq
Info = term()

Returns alist with information about the fun Fun. Each list element is atuple. The order of the tuples is undefined,
and more tuples can be added in afuture release.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 187

erlang

This BIF ismainly intended for debugging, but it can sometimes be useful in library functions that need to verify,
for example, the arity of afun.

Two types of funs have sightly different semantics:

e Afuncreated by fun M F/ Aiscaled an external fun. Caling it will always call the function F with arity A
in the latest code for module M Notice that module Mdoes not even need to be loaded when the funf un M F/
Aiscreated.

» All other funs are called local. When alocal fun is called, the same version of the code that created the fun is
called (even if anewer version of the module has been loaded).

The following elements are always present in the list for both local and external funs:
{type, Type}
Typeisl ocal orexternal.
{nodul e, Modul e}
Modul e (an atom) isthe module name.
If Fun isalocal fun, Modul e isthe module in which the fun is defined.
If Fun isan externa fun, Modul e isthe module that the fun refers to.
{nane, Nane}
Nane (an atom) is a function name.

If Fun isaloca fun, Nane isthe name of the local function that implements the fun. (This name was generated
by the compiler, and is only of informational use. Asitisalocal function, it cannot be called directly.) If no code
iscurrently loaded for the fun, [] isreturned instead of an atom.

If Fun isan externa fun, Name is the name of the exported function that the fun refersto.
{arity, Arity}
Ari ty isthe number of arguments that the fun isto be called with.
{env, Env}
Env (alist) isthe environment or free variables for the fun. For external funs, the returned list is always empty.
The following elements are only present in the list if Fun islocal:
{pid, Pid}
Pi d isthe processidentifier of the process that originally created the fun.

It might point tothei ni t processif the Fun was statically allocated when module was |oaded (this optimisation
is performed for local functions that do not capture the environment).

{index, Index}

I ndex (aninteger) is an index into the module fun table.
{new_i ndex, | ndex}

I ndex (aninteger) is an index into the module fun table.
{new_uni g, Uni g}

Uni q (abinary) isaunique value for thisfun. It is calculated from the compiled code for the entire module.

188 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{uni g, Uniq}

Uni g (an integer) is a unique value for this fun. As from Erlang/OTP R15, this integer is calculated from the
compiled code for the entire module. Before Erlang/OTP R15, thisinteger was based on only the body of the fun.

erlang:fun_info(Fun, Item) -> {Item, Info}
Types:
Fun = function()
Item = fun info item()
Info = term()
fun_info item() =
arity | env | index | name | module | new index | new uniq |
pid | type | uniq
Returnsinformation about Fun as specified by | t emyintheform{ It em | nf o} .
For any fun, | t emcan be any of the atomsnodul e, nane,arity,env,ortype.

For alocal fun, | t emcan also be any of the atoms i ndex, new_i ndex, new_uni ¢, uni g, and pi d. For an
external fun, the value of any of theseitemsis alwaysthe atom undef i ned.

Seeerl ang: fun_i nfo/ 1.

erlang:fun_to list(Fun) -> String :: string()
Types:

Fun = function()
Returns St r i ng that represents the code that created Fun.

String has the following form, if Fun was created by a fun expresson of the form fun
Modul eNane: FuncNane/ Arity:

"fun Modul eNarme: FuncNane/ Arity"

The form of Stri ng when Fun is created from other types of fun expressions differs depending on if the fun
expression was executed while executing compiled code or if the fun expression was executed while executing
uncompiled code (uncompiled escripts, the Erlang shell, and other code executed by the erl_eval module):

compiled code

"#Fun<M | . U>" , where M, | and U correspond to the values named nodul e, i ndex and uni q in theresult
of erl ang: fun_i nf o(Fun).

uncompiled code

All funs created from fun expressionsin uncompiled code with the same arity are mapped to the same list by
fun_to list/1.

Generdly, onecannotusef un_t o_l i st/ 1 tocheck if twofunsareequal asfun_t o_| i st/ 1 does not take
the fun's environment into account. Seeer | ang: f un_i nf o/ 1 for how to get the environment of afun.

Theoutput of fun_to_|i st/ 1 can differ between Erlang implementations and may change in future versions.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 189

erlang

Examples:

-module(test).

-export([add/1, add2/0, fun tuple/0]).

add(A) -> fun(B) -> A + B end.

add2() -> fun add/1.

fun_tuple() -> {fun() -> 1 end, fun() -> 1 end}.

> {fun test:add/1, test:add2()}.
{fun test:add/1,#Fun<test.1.107738983>}

Explanation: f un t est: add/ 1 isupgradablebutt est : add2() isnot upgradable.

> {test:add(1l), test:add(42)}.
{#Fun<test.0.107738983>,#Fun<test.0.107738983>}

Explanation: t est : add(1) andt est : add(42) hasthe same string representation asthe environment isnot taken
into account.

>test:fun_tuple().
{#Fun<test.2.107738983>,#Fun<test.3.107738983>}

Explanation: The string representations differ because the funs come from different fun experssions.

> {fun() -> 1 end, fun() -> 1 end}. >
{#Fun<erl eval.45.97283095>,#Fun<erl _eval.45.97283095>}

Explanation: All funs created from fun expressions of this form in uncompiled code with the same arity are mapped
tothesamelistby fun_to list/1.

erlang:function exported(Module, Function, Arity) -> boolean()
Types:
Module = module()
Function = atom()
Arity = arity()
Returnst r ue if the module Modul e iscurrent and contains an exported function Funct i on/ Ari ty, or if thereis
aBIF (abuilt-in function implemented in C) with the specified name, otherwise returnsf al se.

garbage collect() -> true

Forces an immediate garbage collection of the executing process. The function is not to be used unless it has been
noticed (or there are good reasons to suspect) that the spontaneous garbage collection will occur too late or not at all.

‘ Improper use can seriously degrade system performance. ‘

garbage collect(Pid) -> GCResult
Types:

190 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Pid = pid()
GCResult = boolean()
Thesameasgar bage collect(Pid, []).

garbage collect(Pid, OptionList) -> GCResult | async
Types:
Pid = pid()
RequestId = term()
Option = {async, RequestId} | {type, major | minor}
OptionList = [Option]
GCResult = boolean()
Garbage collects the node local process identified by Pi d.

Option:

{async, Request|d}
Thefunction gar bage_col | ect / 2 returns the value async immediately after the request has been sent.
When the request has been processed, the process that called this function is passed a message on the form
{garbage_col l ect, Requestld, GCResult}.

{type, "major' | 'minor'}
Triggers garbage collection of requested type. Default valueis' maj or ' , which would trigger afullsweep GC.
Theoption' m nor " isconsidered a hint and may lead to either minor or major GC run.

If Pi d equalssel f (), andnoasync option has been passed, the garbage collection is performed at once, that is, the
same as calling gar bage_col | ect/ 0. Otherwise arequest for garbage collection is sent to the process identified
by Pi d, and will be handled when appropriate. If noasync option hasbeen passed, the caller blocksuntil GCResul t
is available and can be returned.

CCResul t informs about the result of the garbage collection request as follows:

true
The processidentified by Pi d has been garbage collected.

fal se
No garbage collection was performed, as the process identified by Pi d terminated before the request could be
satisfied.

Notice that the same caveats apply asfor gar bage_col | ect/ 0.

Failures:

badar g

If Pi d isnot anodelocal processidentifier.
badar g

If Opti onLi st isaninvalid list of options.

get() -> [{Key, Val}]
Types:
Key = Val = term()

Returns the process dictionary as alist of { Key, Val } tuples. The itemsin the returned list can be in any order.
Example:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 191

erlang

> put(keyl, merry),

put(key2, lambs),

put(key3, {are, playing}),

get().

[{keyl,merry}, {key2,lambs}, {key3,{are,playing}}]

get(Key) -> Val | undefined
Types:
Key = Val = term()
Returns the value Val associated with Key in the process dictionary, or undef i ned if Key does not exist. The

expected time complexity for the current implementation of this function is O(1) and the worst case time complexity
is O(N), where Nis the number of itemsin the process dictionary. Example:

> put(keyl, merry),

put(key2, lambs),

put({any, [valid, terml}, {are, playing}),
get({any, [valid, term]}).

{are,playing}

erlang:get cookie() -> Cookie | nocookie
Types:
Cookie = atom()
Returns the magic cookie of the local nodeif the node is alive, otherwise the atom nocooki e.

erlang:get cookie(Node) -> Cookie | nocookie
Types:

Node = node()

Cookie = atom()

Returns the magic cookie for node Node if the local node is alive, otherwise the atom nocooki e.

get keys() -> [Key]
Types:
Key = term()
Returnsalist of al keys present in the process dictionary. Theitemsin the returned list can bein any order. Example:

> put(dog, {animal,l}),
put(cow, {animal,2}),
put(lamb, {animal,3}),
get keys().

[dog, cow, lamb]

get keys(Val) -> [Key]
Types:

192 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Val = Key = term()

Returns a list of keys that are associated with the value Val in the process dictionary. The itemsin the returned list
can bein any order. Example:

> put(mary, {1, 2}),
put(had, {1, 2}),

put(a, {1, 2}),
put(little, {1, 2}),
put(dog, {1, 3}),
put(lamb, {1, 2}),

get keys({1, 2}).
[mary,had,a,little, lamb]

group leader() -> pid()
Returns the process identifier of the group leader for the process evaluating the function.

Every process is a member of some process group and all groups have a group leader. All 1/O from the group is
channeled to the group leader. When anew processis spawned, it gets the same group leader as the spawning process.
Initially, at system startup, i ni t isboth its own group leader and the group leader of all processes.

group leader(GroupLeader, Pid) -> true
Types:
GroupLeader = Pid = pid()
Sets the group leader of Pi d to Gr oupLeader . Typicaly, thisis used when a process started from a certain shell
isto have another group leader thani ni t .

The group leader should be rarely changed in applications with a supervision tree, because OTP assumes the group
leader of their processesis their application master.

Setting the group leader follows the signal ordering guarentees described in the Processes Chapter in the Erlang
Reference Manual.

Seedsogroup_| eader/ 0 and OTP design principles related to starting and stopping applications.

halt() -> no_return()
Thesameashal t (0, []).Example

> halt().
0S_prompts

halt(Status) -> no return()
Types:

Status = integer() >= 0 | abort | string()
Thesameashal t (Status, []).Example

> halt(17).
os_prompt% echo $?
17

0s_prompt%

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 193

erlang

halt(Status, Options) -> no return()

Types.
Status = integer() >= 0 | abort | string()
Options = [Option]
Option = {flush, boolean()}

St at us must be anon-negative integer, astring, or the atom abor t . Halts the Erlang runtime system. Has no return
value. Depending on St at us, the following occurs:

integer()
The runtime system exits with integer value St at us as status code to the calling environment (OS).

On many platforms, the OS supports only status codes 0-255. A too large status code is truncated by clearing
the high bits.

string()
An Erlang crash dump is produced with St at us as slogan. Then the runtime system exits with status code 1.
The string will be truncated if longer than 200 characters.

Before ERTS 9.1 (OTP-20.1) only code pointsin the range 0-255 was accepted in the string. Now any unicode
string isvalid.

abort
The runtime system aborts producing a core dump, if that is enabled in the OS.

For integer St at us, the Erlang runtime system closes all ports and alows async threads to finish their operations
before exiting. To exit without such flushing, use Opt i on as{f | ush, f al se}.

For statusesst ri ng() andabort , option f | ush isignored and flushing is not done.

hd(List) -> term()
Types:
List = [term(), ...]
Returnsthe head of Li st , that is, the first element, for example:

> hd([1,2,3,4,5]).
1

Allowed in guard tests.
Failure: badar g if Li st istheempty list[] .

erlang:hibernate(Module, Function, Args) -> no _return()
Types:

194 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Module = module()

Function = atom()

Args = [term()]
Puts the calling process into a wait state where its memory allocation has been reduced as much as possible. Thisis
useful if the process does not expect to receive any messages soon.

The process is awaken when amessage is sent to it, and control resumesin Modul e: Funct i on with the arguments
specified by Ar gs with the call stack emptied, meaning that the process terminates when that function returns. Thus
erl ang: hi ber nat e/ 3 never returns to its caller. The resume function Modul e: Functi on/ Ari ty must be
exported (Arity ==1 engt h(Args)).

If the process has any messagein its message queue, the processis awakened immediately in the sameway as described
earlier.

In more technical terms, er | ang: hi ber nat e/ 3 discards the call stack for the process, and then garbage collects
the process. After this, all live datais in one continuous heap. The heap is then shrunken to the exact same size asthe
live datathat it holds (even if that size is less than the minimum heap size for the process).

If the size of the live datain the processis|ess than the minimum heap size, the first garbage collection occurring after
the process is awakened ensures that the heap size is changed to a size not smaller than the minimum heap size.

Notice that emptying the call stack means that any surrounding cat ch is removed and must be re-inserted after
hibernation. One effect of this is that processes started using pr oc_| i b (also indirectly, such as gen_ser ver
processes), areto use proc_| i b: hi ber nat e/ 3 instead, to ensure that the exception handler continues to work
when the process wakes up.

erlang:insert element(Index, Tuplel, Term) -> Tuple2
Types:

Index = integer() >=1

1..tuple size(Tuplel) + 1

Tuplel = Tuple2 = tuple()

Term = term()

Returns a new tuple with element Ter minserted at position | ndex in tuple Tupl el1. All elements from position
I ndex and upwards are pushed one step higher in the new tuple Tupl e2. Example:

> erlang:insert element(2, {one, two, three}, new).
{one, new, two, three}

integer to _binary(Integer) -> binary()
Types.
Integer = integer()
Returns a binary corresponding to the text representation of | nt eger , for example:

> integer to binary(77).
<<"77">>

integer to binary(Integer, Base) -> binary()
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 195

erlang

Integer = integer()
Base = 2..36

Returns a binary corresponding to the text representation of | nt eger in base Base, for example:

> integer to binary(1023, 16).
<<"3FF">>

integer to list(Integer) -> string()
Types.
Integer = integer()

Returns a string corresponding to the text representation of | nt eger , for example:

> integer_to list(77).
wggn

integer to list(Integer, Base) -> string()

Types:
Integer = integer()
Base = 2..36

Returns a string corresponding to the text representation of |1 nt eger in base Base, for example:

> integer to list(1023, 16).
II3FFII

iolist size(Item) -> integer() >= 0
Types:
Item = iolist() | binary()

Returns an integer, that isthe sizein bytes, of the binary that would betheresultof i ol i st _to_binary(lten),
for example:

> iolist size([1,2]<<3,4>>]).
4

iolist to binary(IoListOrBinary) -> binary()
Types:
IoListOrBinary = iolist() | binary()
Returns a binary that is made from the integers and binariesin | oLi st Or Bi nar y, for example:

196 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

> Binl = <<1,2,3>>.

<<1,2,3>>

> Bin2 = <<4,5>>.

<<4,5>>

> Bin3 = <<6>>.

<<6>>

> iolist to binary([Binl1,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6>>

erlang:iolist to iovec(IoListOrBinary) -> iovec()
Types.
IoListOrBinary = iolist() | binary()

Returns aniovec that is made from the integersand binariesin | oLi st Or Bi nar y. Thisfunction isuseful when you
want to flatten an iolist but you do not need a single binary. This can be useful for passing the data to nif functions
suchaseni f _i nspect _i ovec or do more efficient message passing. The advantage of using this function over
i olist_to_binary/1isthatitdoesnot haveto copy off-heap binaries. Example:

> Binl = <<1,2,3>>.
<<1,2,3>>
> Bin2 = <<4,5>>,
<<4,5>>
> Bin3 = <<6>>.
<<6>>
%% If you pass small binaries and integers it works as iolist to binary
> erlang:iolist to iovec([Binl1,1,[2,3,Bin2],4|Bin3]).
[<<1,2,3,1,2,3,4,5,4,6>>]
%% If you pass larger binaries, they are split and returned in a form
%% optimized for calling the C function writev.
> erlang:iolist to iovec([<<1>>,<<2:8096>>,<<3:8096>>]).
[<<1,0,
0,...>>,
<<0,
L>>,

<<0,9,0, ...>>]

is alive() -> boolean()

Returnst r ue if the local node is alive (that is, if the node can be part of a distributed system), otherwise f al se.
A nodeisadliveif it is started with:

e "erl -nane LONGNAVE" or,
e "erl -sname SHORTNANME".

A node can also be dive if it has got aname from acal to net _kernel : st art/ 1 and has not been stopped by
acdl tonet _kernel : st op/ 0.

is atom(Term) -> boolean()
Types.
Term = term()
Returnst r ue if Ter misan atom, otherwisef al se.

Allowed in guard tests.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 197

erlang

is binary(Term) -> boolean()
Types:

Term = term()
Returnst r ue if Ter misabinary, otherwisef al se.
A binary always contains a complete number of bytes.
Allowed in guard tests.

is bitstring(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misahitstring (including abinary), otherwisef al se.

Allowed in guard tests.

is boolean(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter mistheatomt r ue or theatomf al se (that is, aboolean). Otherwise returnsf al se.

Allowed in guard tests.

erlang:is builtin(Module, Function, Arity) -> boolean()
Types:
Module = module()
Function = atom()
Arity = arity()
This BIF isuseful for builders of cross-reference tools.
Returnst r ue if Modul e: Functi on/ Arity isaBIFimplementedin C, otherwisef al se.

is float(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misafloating point number, otherwisef al se.

Allowed in guard tests.

is function(Term) -> boolean()
Types:

Term = term()
Returnst r ue if Ter misafun, otherwisef al se.

Allowed in guard tests.

is function(Term, Arity) -> boolean()
Types:

198 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Term = term()

Arity = arity()
Returnst r ue if Ter misafun that can be applied with Ar i t y number of arguments, otherwisef al se.
Allowed in guard tests.

is _integer(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misan integer, otherwisef al se.

Allowed in guard tests.

is list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misalist with zero or more elements, otherwisef al se.

Allowed in guard tests.

is map(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misamap, otherwisef al se.

Allowed in guard tests.

is map key(Key, Map) -> boolean()

Types:
Key = term()
Map = map()

Returnst r ue if map Map contains Key and returnsf al se if it does not contain the Key.
Thecdl failswith a{ badnmap, Map} exceptionif Map isnot a map.

Example:

> Map = #{"42" => value}.
#{"42" => value}

> is map_key("42",Map) .
true

> is map_key(value,Map).
false

Allowed in guard tests.

is number(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misan integer or afloating point number. Otherwise returnsf al se.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 199

erlang

Allowed in guard tests.

is pid(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaprocessidentifier, otherwisef al se.
Allowed in guard tests.

is port(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaport identifier, otherwisef al se.
Allowed in guard tests.

is process alive(Pid) -> boolean()
Types:
Pid = pid()
Pi d must refer to a process at the local node.
Returnst r ue if the process exists and is aive, that is, is not exiting and has not exited. Otherwise returnsf al se.

If process P1 callsi s_process_al i ve(P2Pi d) it isguaranteed that al signals, sent from P1 to P2 (P2 isthe
process with identifier P2Pi d) before the call, will be delivered to P2 before the aliveness of P2 is checked. This
guarantee means that one can usei s_pr ocess_al i ve/ 1 to let aprocess P1 wait until a process P2, which has
got an exit signal withreason ki | I from P1, iskilled. Example:

exit(P2Pid, kill),

% P2 might not be killed

is process alive(P2Pid),

% P2 is not alive (the call above always return false)

See the documentation about signals and erlang:exit/2 for more information about signals and exit singnals.

is record(Term, RecordTag) -> boolean()
Types:

Term = term()

RecordTag = atom()

Returnst r ue if Ter misatuple and itsfirst element isRecor dTag. Otherwisereturnsf al se.

Normally the compiler treats callstoi s_r ecor d/ 2 especialy. It emits code to verify that Ter misatuple, that
itsfirst element isRecor dTag, and that the sizeis correct. However, if Recor dTag isnot aliteral atom, the BIF
i s_record/ 2iscaledinstead and the size of the tupleis not verified.

Allowed in guard tests, if Recor dTag isaliteral atom.

200 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

is record(Term, RecordTag, Size) -> boolean()
Types.
Term = term()
RecordTag = atom()
Size = integer() >= 0
Recor dTag must be an atom.
Returnst r ue if Ter misatuple, itsfirst lementisRecor dTag, and itssizeis Si ze. Otherwisereturnsf al se.

Allowed in guard testsif Recor dTag isaliteral atom and Si ze isaliteral integer.

| This BIF is documented for completeness. Usually i s_r ecor d/ 2 isto be used. |

is reference(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misareference, otherwisef al se.

Allowed in guard tests.

is tuple(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misatuple, otherwisef al se.

Allowed in guard tests.

length(List) -> integer() >= 0
Types:

List = [term()]
Returnsthe length of Li st , for example:

> length([1,2,3,4,5,6,7,8,9]).
9

Allowed in guard tests.

link(PidOrPort) -> true
Types:
PidOrPort = pid() | port()

Sets up and activates alink between the calling process and another process or aport identified by Pi dOr Port . We
will from here on call the identified process or port linkee. If the linkee is a port, it must reside on the same node
asthecdler.

If one of the participants of alink terminates, it will send an exit signal to the other participant. The exit signal will
contain the exit reason of the terminated participant. Other cases when exit signals are triggered due to alink are when

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 201

erlang

no linkee exist (nopr oc exit reason) and when the connection between linked processes on different nodesislost or
cannot be established (noconnect i on exit reason).

An existing link can be removed by calling unl i nk/ 1. For more information on links and exit signals due to links,
see the Processes chapter in the Erlang Reference Manual:

e Links

» Sending Exit Signals

e Receiving Exit Signals

For historical reasons, | i nk/ 1 has a strange semi-synchronous behavior when it is "cheap" to check if the linkee
exists or not, and the caller does not trap exits. If the above is true and the linkee does not exist, | i nk/ 1 will raisea
nopr oc error exception. The expected behavior would instead have beenthat | i nk/ 1 returnedt r ue, and thecaller
later was sent an exit signal with nopr oc exit reason, but this is unfortunately not the case. The nopr oc exception

is not to be confused with an exit signal with exit reason nopr oc. Currently it is"cheap" to check if the linkee exists
when it is supposed to reside on the same node as the calling process.

Thelink setup and activation is performed asynchronously. If the link already exists, or if the caller attempts to create
alink to itself, nothing is done. A detailed description of the link protocol can be found in the Distribution Protocol
chapter of the ERTS User's Guide.

Failure:

e badar g if Pi dOr Port doesnot identify a process or anode local port.
* noproc linkee does not exist and it is "cheap" to check if it exists as described above.

list to atom(String) -> atom()
Types:
String = string()
Returns the atom whose text representationis St r i ng.

As from Erlang/OTP 20, St ri ng may contain any Unicode character. Earlier versions allowed only |SO-latin-1
characters as the implementation did not allow Unicode characters above 255.

The number of characters that are permitted in an atom name is limited. The default limits can be found in the
efficiency guide (section Advanced).

There is configurable limit on how many atoms that can exist and atoms are not garbage collected. Therefore, it
isrecommended to consider if | i st _t 0_exi sting_at onl 1 isabetter optionthan! i st _to_at om 1.The
default limits can be found in the efficiency guide (section Advanced).

Example:

> list to atom("Erlang").
'"Erlang’

list to binary(IoList) -> binary()
Types:

202 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

IoList = iolist()
Returns a binary that is made from the integers and binariesin | oLi st , for example:

> Binl = <<1,2,3>>.

<<1,2,3>>

> Bin2 = <<4,5>>.

<<4,5>>

> Bin3 = <<6>>.

<<6>>

> list to binary([Binl,1,[2,3,Bin2],4|Bin3]).
<<11213111213r4151416>>

list to bitstring(BitstringList) -> bitstring()
Types.
BitstringlList = bitstring list()
bitstring list() =
maybe improper list(byte() | bitstring() | bitstring list(),
bitstring() | [1)

Returns a bitstring that is made from the integers and bitstrings in Bi t stringlLi st. (The last tal in
Bi t stri ngLi st isallowed to be abitstring.) Example:

> Binl = <<1,2,3>>.

<<1,2,3>>

> Bin2 = <<4,5>>.

<<4,5>>

> Bin3 = <<6,7:4>>.

<<6,7:4>>

> list to bitstring([Binl,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6,7:4>>

list to existing atom(String) -> atom()
Types.
String = string()
Returns the atom whose text representation is St r i ng, but only if there already exists such atom. An atom exists if
it has been created by the run-time system by either loading code or creating aterm in which the atom is part.

Failure: badar g if there does not already exist an atom whose text representationis St ri ng.

Note that the compiler may optimize away atoms. For example, the compiler will rewrite
atomto_list(sone_atom to "some_atom'. If that expression is the only mention of the atom
some_at omin the containing module, the atom will not be created when the module is loaded, and a subsequent
caltolist_to_existing aton("sone_atont') will fail.

list to float(String) -> float()
Types:
String = string()
Returns the float whose text representation is St r i ng, for example:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 203

erlang

> list to float("2.2017764e+0").
2.2017764

Thefloat string format isthe same as the format for Erlang float literals except for that underscores are not permitted.
Failure: badar g if St ri ng contains a bad representation of afloat.

list to integer(String) -> integer()
Types:
String = string()
Returns an integer whose text representationis St r i ng, for example:

> list to integer("123").
123

> list to integer("-123").
-123

> list_to_integer("+123234982304982309482093833234234").
123234982304982309482093833234234

St ri ng must contain at least one digit character and can have an optional prefix consisting of asingle "+" or "-"
character (that is, St r i ng must match the regular expression " A[+-] ?[0- 9] +$").

Failure: badar g if St ri ng contains a bad representation of an integer.

list to integer(String, Base) -> integer()

Types:
String = string()
Base = 2..36

Returns an integer whose text representation in base Base is St r i ng, for example:

> list to integer("3FF", 16).
1023

> list_to_integer("+3FF", 16).
1023

> list to integer("3ff", 16).
1023

> list to integer("3fF", 16).
1023

> list to integer("-3FF", 16).
-1023

204 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

For example, when Base is16, St r i ng must match the regular expression" [+-]1?([0-9] | [A-F] | [a-f]) +
$II i
Failure: badar g if St ri ng contains abad representation of an integer.

list to pid(String) -> pid()
Types:
String = string()
Returns a process identifier whose text representationisa St r i ng, for example:

> list to pid("<0.4.1>").
<0.4.1>

Failure: badar g if St ri ng contains a bad representation of a process identifier.

This BIF isintended for debugging and is not to be used in application programs.

list to port(String) -> port()
Types:
String = string()
Returns a port identifier whose text representation isa St r i ng, for example:

> list to port("#Port<0.4>").
#Port<0.4>

Failure: badar g if St ri ng contains a bad representation of aport identifier.

This BIF isintended for debugging and is not to be used in application programs.

list to ref(String) -> reference()
Types:
String = string()
Returns areference whose text representationisa St r i ng, for example:

> list_to_ref("#Ref<0.4192537678.4073193475.71181>").
#Ref<0.4192537678.4073193475.71181>

Failure: badar g if St ri ng contains a bad representation of areference.

This BIF isintended for debugging and is not to be used in application programs.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 205

erlang

list to tuple(List) -> tuple()
Types:

List = [term()]
Returns atuple corresponding to Li st , for example

> list to tuple([share, ['Ericsson B', 163]1).
{share, ['Ericsson B', 163]}

Li st can contain any Erlang terms.

load module(Module, Binary) -> {module, Module} | {error, Reason}

Types:
Module = module()
Binary = binary()
Reason = badfile | not purged | on_load

If Bi nary contains the object code for module Modul e, this BIF loads that object code. If the code for module
Modul e already exists, all export references are replaced so they point to the newly loaded code. The previously
loaded code is kept in the system as old code, as there can still be processes executing that code.

Returns either { nodul e, Mddul e}, or{error, Reason} ifloadingfails. Reason isone of the following:

badfile
The object code in Bi nar y has an incorrect format or the object code contains code for another module than
Modul e.

not _purged
Bi nar y contains a module that cannot be loaded because old code for this module already exists.

on_| oad
Thecodein Bi nar y containsan on_| oad declaration that must be executed before Bi nar y can become the
current code. Any previous current code for Modul e will remain until theon_| oad call has finished.

‘ This BIF isintended for the code server (see code(3)) and is not to be used elsewhere. ‘

erlang:load nif(Path, LoadInfo) -> ok | Error
Types:
Path = string()
LoadInfo = term()
Error = {error, {Reason, Text :: string()}}
Reason =
load failed | bad lib | load | reload | upgrade | old code

Loads and links a dynamic library containing native implemented functions (NIFs) for amodule. Pat h is afile path
to the shareable object/dynamic library file minus the OS-dependent file extension (. so for Unix and . dl | for
Windows). Notice that on most OSs the library has to have a different name on disc when an upgrade of the nif is
done. If the name is the same, but the contents differ, the old library may be loaded instead. For information on how
to implement aNIF library, seeer| _ni f(3).

Loadl nf o can be any term. It is passed on to the library as part of the initialization. A good practiceisto include a
module version number to support future code upgrade scenarios.

206 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Thecall tol oad_ni f/ 2 must be made directly from the Erlang code of the module that the NIF library belongs to.
It returns either ok, or { err or, { Reason, Text } } if loading fails. Reason is one of the following atoms while
Text isahuman readable string that can give more information about the failure:

| oad failed
The OSfailed to load the NIF library.
bad_lib
Thelibrary did not fulfill the requirements as a NIF library of the calling module.
| oad | upgrade
The corresponding library callback was unsuccessful.
rel oad
A NIF library is already loaded for this module instance. The previously deprecated r el oad feature was
removed in OTP 20.
ol d_code
Thecall tol oad_ni f/ 2 was made from the old code of a module that has been upgraded; thisis not allowed.

erlang:loaded() -> [Module]
Types:
Module = module()
Returns alist of all loaded Erlang modules (current and old code), including preloaded modules.

Seealsocode(3).

erlang:localtime() -> DateTime
Types:
DateTime = calendar:datetime()
Returnsthe current local dateandtime, { { Year, Mont h, Day}, {Hour, M nute, Second}},forexample
> erlang:localtime().
{{1996,11,6},{14,45,17}}
The time zone and Daylight Saving Time correction depend on the underlying OS. The return value is based on the
OS System Time.

erlang:localtime to universaltime(Localtime) -> Universaltime
Types:
Localtime = Universaltime = calendar:datetime()

Convertslocal date and time to Universal Time Coordinated (UTC), if supported by the underlying OS. Otherwise no
conversionisdoneand Local ti me isreturned. Example:

> erlang:localtime to universaltime({{1996,11,6},{14,45,17}}).
{{1996,11,6},{13,45,17}}
Failure: badar g if Local ti me denotesaninvalid date and time.

erlang:localtime to universaltime(Localtime, IsDst) ->
Universaltime

Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 207

erlang

Localtime = Universaltime = calendar:datetime()
IsDst = true | false | undefined

Converts local date and time to Universal Time Coordinated (UTC) as
erlang:localtine_to_universaltimnme/1,butthecaler decidesif Daylight Saving Timeis active.

If 1sDst == true, Localtine is during Daylight Saving Time, if |sDst == false it
is not. If |sDst == undefi ned, the underlying OS can guess, which is the same as calling
erlang:localtine_to_universaltinme(Localtine).

Examples:

> erlang:localtime to universaltime({{1996,11,6},{14,45,17}}, true).
{{1996,11,6},{12,45,17}}

> erlang:localtime to universaltime({{1996,11,6},{14,45,17}}, false).
{{1996,11,6},{13,45,17}}

> erlang:localtime to universaltime({{1996,11,6},{14,45,17}}, undefined).
{{1996,11,6},{13,45,17}}

Failure: badar g if Local ti me denotesaninvalid date and time.

make ref() -> reference()
Returns a unique reference. The reference is unique among connected nodes.

Before OTP-23 when a node is restarted multiple times with the same node name, references created on a newer
node can be mistaken for areference created on an older node with the same node name.

erlang:make tuple(Arity, InitialValue) -> tuple()
Types:
Arity = arity()
InitialValue = term()
Creates anew tuple of the specified Ari t y, whereall elementsarel ni ti al Val ue, for example:

> erlang:make tuple(4, [1).
{01, 01,01, 1}

erlang:make tuple(Arity, DefaultValue, InitList) -> tuple()
Types:
Arity = arity()
DefaultValue = term()
InitList = [{Position :: integer() >= 1, term()}]
Creates a tuple of size Ari ty, where each element has value Def aul t Val ue, and then fills in values from
I nitList.Eachlistelementinl nitLi st must be atwo-tuple, where the first element is a position in the newly

created tuple and the second element isany term. If aposition occurs more than oncein thelist, the term corresponding
to the last occurrence is used. Example:

208 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

> erlang:make tuple(5, [1, [{2,ignored},{5,zz},{2,aa}]).
{[1,aa,[1,[1,zz}

map _get(Key, Map) -> Value

Types.
Map = map()
Key = Value = any()

Returns value Val ue associated with Key if Map contains Key.

The call fails with a { badrmap, Map} exception if Map is not a map, or with a{badkey, Key} exception if no
value is associated with Key.

Example:
> Key = 1337,
Map = #{42 => value two,1337 => "value one","a" => 1},

map_get(Key,Map) .
"value one"

Allowed in guard tests.

map size(Map) -> integer() >= 0
Types:
Map = map()
Returns an integer, which is the number of key-value pairsin Map, for example:

> map_size(#{a=>1, b=>2, c=>3}).
3

Allowed in guard tests.

erlang:match_spec test(MatchAgainst, MatchSpec, Type) ->
TestResult
Types:
MatchAgainst = [term()] | tuple()
MatchSpec = term()
Type = table | trace
TestResult =

{ok, term(), [return_ trace], [{error | warning, string()}I} |
{error, [{error | warning, string()}I}

Testsamatch specificationusedincalstoet s: sel ect/ 2 ander | ang: trace_patt er n/ 3. Thefunction tests
both a match specification for "syntactic" correctness and runs the match specification against the object. If the match
specification contains errors, thetuple{ err or, Errors} isreturned, where Err or s isalist of natural language
descriptions of what was wrong with the match specification.

If Type is tabl e, the object to match against is to be a tuple. The function then returns { ok, Resul t,
[1, Warni ngs}, where Resul t iswhat would have been theresult in areal et s: sel ect/ 2 cdl, or f al se if
the match specification does not match the object tuple.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 209

erlang

If Type istrace, the object to match against is to be a list. The function returns { ok, Result, Fl ags,
War ni ngs}, whereResul t isone of the following:

e true if atrace messageisto be emitted
- fal seif atrace messageis not to be emitted
* The message term to be appended to the trace message

FI ags isalist containing all the trace flags to be enabled, currently thisisonly ret urn_tr ace.
Thisisauseful debugging and test tool, especially when writing complicated match specifications.
Seeadsoets:test ns/2.

max(Terml, Term2) -> Maximum
Types:
Terml = Term2 = Maximum = term()
Returnsthe largest of Ter nil and Ter nR. If the terms compare equal with the == operator, Ter ni isreturned.
The Expressions section contains descriptions of the == operator and how terms are ordered.
Examples:

> max(1l, 2).
2

> max(1.0, 1).
1.0

> max(1l, 1.0).
1

> max(uabcn , ubu) i
upu

erlang:md5(Data) -> Digest
Types.

Data = iodata()

Digest = binary()

Computes an MD5 message digest from Dat a, where the length of the digest is 128 bits (16 bytes). Dat a isabinary
or alist of small integers and binaries.

For more information about MD5, see RFC 1321 - The M D5 M essage-Digest Algorithm.

| The MD5 Message-Digest Algorithm is not considered safe for code-signing or software-integrity purposes. |

erlang:md5 final(Context) -> Digest
Types.

210 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

href

erlang

Context = Digest = binary()
Finishes the update of an MD5 Cont ext and returns the computed MD5 message digest.

erlang:md5 init() -> Context
Types:
Context = binary()
Creates an MD5 context, to be used in the following callsto nd5_updat e/ 2.

erlang:md5 update(Context, Data) -> NewContext
Types.

Context = binary()

Data = iodata()

NewContext = binary()

Update an MD5 Cont ext with Dat a and returns a NewCont ext .

erlang:memory() -> [{Type, Size}]

Types.
Type = memory type()
Size = integer() >= 0

memory type() =
total | processes | processes used | system | atom |
atom used | binary | code | ets

Returns a list with information about memory dynamically allocated by the Erlang emulator. Each list element isa
tuple { Type, Size}. Thefirst element Type isan atom describing memory type. The second element Si ze is
the memory sizein bytes.

Memory types:
t ot al

Thetotal amount of memory currently allocated. Thisisthe same asthe sum of the memory sizefor pr ocesses
andsystem

processes
The total amount of memory currently allocated for the Erlang processes.
processes_used

The total amount of memory currently used by the Erlang processes. This is part of the memory presented as
processes memory.

system

Thetotal amount of memory currently allocated for the emulator that isnot directly related to any Erlang process.
Memory presented aspr ocesses isnot included inthismemory. i nst r unent (3) canbeusedto get amore
detailed breakdown of what memory is part of this type.

atom

The total amount of memory currently allocated for atoms. This memory is part of the memory presented as
syst emmemory.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 211

erlang

at om used

The total amount of memory currently used for atoms. This memory is part of the memory presented as at om
memory.

bi nary

The total amount of memory currently allocated for binaries. This memory is part of the memory presented as
syst emmemory.

code

The total amount of memory currently allocated for Erlang code. This memory is part of the memory presented
assyst emmemory.

ets

The total amount of memory currently allocated for ETS tables. This memory is part of the memory presented
assyst emmemory.

maxi mum

The maximum total amount of memory allocated since the emulator was started. Thistupleis only present when
the emulator is run with instrumentation.

For information on how to run the emulator with instrumentation, seei nstrument (3) and/orer!| (1) .

The syst emvalueis not complete. Some allocated memory that is to be part of thisvalue is not.

When the emulator isrun with instrumentation, the sy st emvalueis more accurate, but memory directly allocated
for mal | oc (and friends) is still not part of the syst emvalue. Direct callsto mal | oc are only done from OS-
specific runtime libraries and perhaps from user-implemented Erlang driversthat do not use the memory allocation
functionsin the driver interface.

Asthet ot al valueisthesumof pr ocesses andsyst emtheerrorinsyst empropagatestothet ot al value.

The different amounts of memory that are summed are not gathered atomically, which introduces an error in the
result.

The different values have the following relation to each other. Values beginning with an uppercase letter is not part
of the result.

total = processes + system

processes = processes used + ProcessesNotUsed

system = atom + binary + code + ets + OtherSystem
atom = atom used + AtomNotUsed

RealTotal = processes + RealSystem

RealSystem = system + MissedSystem

More tuplesin the returned list can be added in afuture release.

212 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Note:

Thet ot al valueis supposed to be the total amount of memory dynamically allocated by the emulator. Shared
libraries, the code of the emulator itself, and the emul ator stacks are not supposed to beincluded. That is, thet ot al
valueis not supposed to be equal to the total size of all pages mapped to the emulator.

Also, because of fragmentation and prereservation of memory areas, the size of the memory segments containing
the dynamically allocated memory blocks can be much larger than the total size of the dynamically allocated
memory blocks.

Note:

As from ERTS 5.6.4, er | ang: menor y/ 0 requiresthat al erts_al | oc(3) alocators are enabled (default
behavior).

Failure: not sup ifanerts_al | oc(3) alocator has been disabled.

erlang:memory(Type :: memory type()) -> integer() >= 0
erlang:memory(TypeList :: [memory type()]) ->
[{memory type(), integer() >= 0}]
Types:
memory type() =

total | processes | processes used | system | atom |

atom used | binary | code | ets
Returns the memory size in bytes allocated for memory of type Type. The argument can also be specified as a list
of menory_type() aoms, in which case a corresponding list of { menory_type(), Size :: integer
>= 0} tuplesisreturned.

Note:

Asfrom ERTS 5.6.4, er | ang: menory/ 1 requiresthat al erts_al | oc(3) alocators are enabled (default
behavior).

Failures:

badar g
If Type isnot one of the memory types listed in the description of er | ang: nenor y/ 0.

badar g
If maxi mumis passed as Ty pe and the emulator is not run in instrumented mode.

not sup
Ifanerts_al |l oc(3) alocator has been disabled.

Seedsoer | ang: menory/ 0.

min(Terml, Term2) -> Minimum
Types:
Terml = Term2 = Minimum = term()
Returns the smallest of Ter nil and Ter n2. If the terms compare equal with the == operator, Ter m is returned.

The Expressions section contains descriptions of the == operator and how terms are ordered.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 213

erlang

Examples:

> min(1l, 2).

> min(1.0, 1).
1.0

> min(1l, 1.0).
1

> min("abc", "b").
Ilabcll

module loaded(Module) -> boolean()
Types:
Module = module()
Returnst r ue if the module Modul e isloaded, otherwisef al se. It does not attempt to load the module.

This BIF isintended for the code server (see code(3)) and is not to be used elsewhere.

monitor(Type :: process, Item :: monitor process identifier()) ->
MonitorRef

monitor(Type :: port, Item :: monitor port identifier()) ->
MonitorRef

monitor(Type :: time offset, Item :: clock service) -> MonitorRef

Types:

MonitorRef = reference()
registered name() = atom()

registered process identifier() =
registered name() | {registered name(), node()}

monitor process identifier() =
pid() | registered process identifier()

monitor port identifier() = port() | registered name()

Sends a monitor request of type Ty pe to the entity identified by | t em If the monitored entity does not exist or it
changes monitored state, the caller of moni t or / 2 is notified by a message on the following format:

{Tag, MonitorRef, Type, Object, Info}

| The monitor request is an asynchronous signal. That is, it takes time before the signal reaches its destination. |

214 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Type can be one of the following atoms: pr ocess, port orti me_of f set .

A process or port monitor istriggered only once, after that it is removed from both monitoring process and the
monitored entity. Monitors are fired when the monitored process or port terminates, does not exist at the moment of
creation, or if the connection to it islost. If the connection toit islost, we do not know if it still exists. The monitoring
is also turned off when demonitor/1 is called.

A process or port monitor by name resolves the Regi st er edNane to pi d() or port () only once at the
moment of monitor instantiation, later changes to the name registration will not affect the existing monitor.

When apr ocess or port monitor istriggered, a' DOAN message is sent that has the following pattern:
{'DOWN', MonitorRef, Type, Object, Info}

In the monitor message Moni t or Ref and Type are the same as described earlier, and:
hj ect

The monitored entity, which triggered the event. When monitoring a process or a local port, Gbj ect will be
equal tothepi d() or port () that was being monitored. When monitoring process or port by name, Cbj ect
will have format { Regi st er edNane, Node} where Regi st er edNane isthe name which has been used
with noni t or/ 2 cal and Node islocal or remote node name (for ports monitored by name, Node is aways
local node name).

Info

Either the exit reason of the process, nopr oc (process or port did not exist at the time of monitor creation), or
noconnect i on (no connection to the node where the monitored process resides).

Monitoring apr ocess

Creates monitor between the current process and another process identified by | t em which can be a pi d()
(local or remote), an atom Regi st er edName or atuple { Regi st er edNanme, Node} for a registered
process, located el sewhere.

Before ERTS 10.0 (OTP 21.0), monitoring a process could fail with badar g if the monitored processresided
on aprimitive node (such aserl_interface or jinterface), where remote process monitoring is not implemented.

Now, suchacall tononi t or will instead succeed and amonitor iscreated. But the monitor will only supervise
the connection. That is, a{' DOAN' , _, process, _, noconnection} isthe only message that
may be received, as the primitive node have no way of reporting the status of the monitored process.

Monitoring apor t

Creates monitor between the current processand aport identified by | t em which canbeaport () (only local),
an atom Regi st er edNane or atuple { Regi st er edNane, Node} for aregistered port, located on this
node. Note, that attempt to monitor aremote port will result in badar g.

Monitoringat i me_of f set

Monitors changesint i me of f set between Erlang monotonic time and Erlang system time. Onevalid | t em
existsincombinationwiththet i me_of f set Type, namely theatomcl ock_ser vi ce. Noticethat theatom
cl ock_servi ce isnot the registered name of a process. In this case it serves as an identifier of the runtime
system internal clock service at current runtime system instance.

The monitor istriggered when the time offset is changed. This either if the time offset value is changed, or if the
offset is changed from preliminary to final during finalization of the time offset when the single time warp mode
is used. When a change from preliminary to final time offset is made, the monitor is triggered once regardless
of whether the time offset value was changed or not.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 215

erlang

If the runtime system isin multi time warp mode, the time offset is changed when the runtime system detects that
the OS system time has changed. The runtime system does, however, not detect thisimmediately when it occurs.
A task checking the time offset is scheduled to execute at least once a minute, so under normal operation thisis
to be detected within a minute, but during heavy load it can take longer time.

The monitor is not automatically removed after it has been triggered. That is, repeated changes of the time offset
trigger the monitor repeatedly.

When the monitor istriggered a' CHANGE' message is sent to the monitoring process. A ' CHANGE' message
has the following pattern:

{'CHANGE', MonitorRef, Type, Item, NewTimeOffset}

where Moni t or Ref , Type, and | t emare the same as described above, and NewTi mef f set is the new
time offset.

When the ' CHANGE' message has been received you are guaranteed not to retrieve the old time offset when
caling erl ang: ti me_of f set (). Notice that you can observe the change of the time offset when calling
erlang:tine_of fset () beforeyou getthe' CHANGE' message.

Making several callstononi t or / 2 for thesamel t emand/or Ty pe isnot an error; it resultsin as many independent
monitoring instances.

The monitor functionality is expected to be extended. That is, other Typesand | t ens are expected to be supported
in afuture release.

If or when noni t or / 2 is extended, other possible values for Tag, Qbj ect , and | nf o in the monitor message
will be introduced.

monitor(Type :: process,
Item :: monitor process identifier(),
Opts :: [monitor option()]) ->
MonitorRef
monitor(Type :: port,
Item :: monitor port identifier(),
Opts :: [monitor option()]) ->
MonitorRef
monitor(Type :: time offset,
Item :: clock service,
Opts :: [monitor option()]) ->
MonitorRef
Types:

MonitorRef = reference()
registered name() = atom()

registered process identifier() =
registered name() | {registered name(), node()}

monitor process identifier() =
pid() | registered process identifier()
monitor port identifier() = port() | registered name()

Provides an option list for modification of monitoring functionality provided by moni t or/ 2. The Type and I t em
arguments have the same meaning as when passed to noni t or / 2. Currently available options:

216 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{alias, UnaliasOpt}

The returned monitor reference will also become an alias for the calling process. That is, the returned reference
can be used for sending messagesto the calling process. Seealsoal i as/ 0. TheUnal i asOpt determines how
the alias should be deactivated.

explicit_unalias
Only an explicit call tounal i as/ 1 will deactivate the alias.
denoni t or

The alias will be automatically deactivated when the monitor is removed. This either via an explicit cal to
denoni t or/ 1 or when it is automatically removed at the sametimeasa' DOAN message is delivered
due to the monitor. The alias can also still be deactivated viaacall tounal i as/ 1.

reply_denonitor

Thealiaswill be automatically deactivated when the monitor isremoved (seedenoni t or option above) or
areply message sent viathe aliasis received. When areply messageis received viathe alias the monitor will
also be automatically removed. This is useful in client/server scenarios when a client monitors the server
and will get the reply via the alias. Once the response is received both the alias and the monitor will be
automatically removed regardless of whether the responseisareply or a' DOAN message. The alias can
also still be deactivated viaacall tounal i as/ 1. Notethat if the aliasis removed using theunal i as/ 1
BIF, the monitor will still be left active.

Example:

server() ->
receive
{request, AliasReqld, Request} ->
Result = perform_request(Request),
AliasReqId ! {reply, AliasReqld, Result}
end,
server().

client(ServerPid, Request) ->
AliasMonReqId = monitor(process, ServerPid, [{alias, reply demonitor}]),
ServerPid ! {request, AliasMonReqld, Request},
%% Alias as well as monitor will be automatically deactivated if we
%% receive a reply or a 'DOWN' message since we used 'reply demonitor'
%% as unalias option...

receive
{reply, AliasMonReqld, Result} ->
Result;
{'DOWN', AliasMonReqld, process, ServerPid, ExitReason} ->
error(ExitReason)

end.

Note that both the server and the client in this example must be executing on at least OTP 24 systems in order
for thisto work.

For more information on process aliases see the Process Aliases section of the Erlang Reference Manual.
{tag, UserDefinedTag}

Replace the default Tag with User Def i nedTag in the monitor message delivered when the monitor is
triggered. For example, when monitoring a process, the' DOAN' tag in the down message will be replaced by
User Def i nedTag.

An example of how the{t ag, User Defi nedTag} option can be used in order to enable the new selective
receive optimization, introduced in OTP 24, when making multiple requests to different servers:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 217

erlang

server() ->
receive
{request, From, Reqld, Request} ->
Result = perform_request(Request),
From ! {reply, self(), Reqld, Result}
end,
server().

client(ServerPids, Request) when is list(ServerPids) ->
ReqId = make ref(),
lists:foreach(fun (ServerPid) ->
= monitor(process, ServerPid,
[{tag, {'DOWN', ReqId}}]),
ServerPid ! {request, self(), Reqld, Request}
end,
ServerPids),
receive replies(ReqId, length(ServerPids), [1).

receive replies(ReqIld, 0, Acc) ->
Acc;
receive replies(ReqId, N, Acc) ->
%% The compiler will detect that we match on the 'ReqId'
reference in all clauses, and will enable the selective
receive optimization which makes the receive able to
skip past all messages present in the message queue at
the time when the 'Reqld' reference was created...
Res = receive
{reply, ServerPid, Reqld, Result} ->
%% Here we typically would have deactivated the
%% monitor by a call to demonitor(Mon, [flush]) but
%% we ignore this in this example for simplicity...
{ok, ServerPid, Result};
{{'DOWN', ReqId}, Mon, process, ServerPid, ExitReason} ->
{error, ServerPid, ExitReason}
end,
receive replies(ReqId, N-1, [Res | Acc]).

In order for this example to work as intended, the client must be executing on at least an OTP 24 system, but
the servers may execute on older systems.

monitor _node(Node, Flag) -> true

Types.
Node = node()
Flag = boolean()

Monitor the status of the node Node. If Fl ag ist r ue, monitoring is turned on. If Fl ag isf al se, monitoring is
turned off.

Making several callsto noni t or _node(Node, true) for the same Node isnot an error; it results in as many
independent monitoring instances.

If Node fails or does not exist, the message { nodedown, Node} isdelivered to the process. If aprocess has made
two callstononi t or _node(Node, true) and Node terminates, two nodedown messages are delivered to the
process. If there is no connection to Node, an attempt is made to create one. If this fails, anodedown message is
delivered.

The delivery of the nodedown signal is not ordered with respect to other link or monitor signals from the node that
goes down. If you need a guarantee that all signals from the remote node has been delivered before the nodedown
signal is sent, you should use net _ker nel : noni t or _nodes/ 1.

Nodes connected through hidden connections can be monitored as any other nodes.

218 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Failure: not al i ve if thelocal nodeis not aive.

erlang:monitor node(Node, Flag, Options) -> true

Types:
Node = node()
Flag = boolean()

Options = [Option]
Option = allow passive connect

Behaves as nonitor_node/ 2 except that it alows an extra option to be specified, namely
al | ow_passi ve_connect . This option alows the BIF to wait the normal network connection time-out for the
monitored node to connect itself, even if it cannot be actively connected from this node (that is, it is blocked). The
state where this can be useful can only be achieved by using the Kernel option di st _aut o_connect once. If
that option is not used, option al | ow_passi ve_connect has no effect.

Optional | ow_passi ve_connect isused internally and is seldom needed in applications where the network
topology and the Kernel optionsin effect are known in advance.

Failure: badar g if the local node is not alive or the option list is malformed.

erlang:monotonic time() -> integer()

Returns the current Erlang monotonic timein nat i ve time unit. Thisis a monotonically increasing time since some
unspecified point in time.

Thisisamonotonically increasing time, but not a strictly monotonically increasing time. That is, consecutive calls
toer| ang: monot oni c_t i ne/ 0 can produce the same result.

Different runtime system instances will use different unspecified points in time as base for their Erlang monotonic
clocks. That is, it is pointless comparing monotonic times from different runtime system instances. Different
runtime system instances can also place this unspecified point in time different relative runtime system start. It
can be placed in the future (time at start is a negative value), the past (time at start is a positive value), or the
runtime system start (time at start is zero). The monotonic time at runtime system start can be retrieved by calling
erl ang: system.info(start_tine).

erlang:monotonic time(Unit) -> integer()
Types:
Unit = time unit()
Returns the current Erlang monotonic time converted into the Uni t passed as argument.

Same as calling er| ang: convert _time_unit(erlang: nmonotonic_tine(), native, Unit),
however optimized for commonly used Uni t s.

erlang:nif error(Reason) -> no return()
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 219

erlang

Reason = term()

Works exactly like er r or/ 1, but Dialyzer thinks that this BIF will return an arbitrary term. When used in a stub
function for a NIF to generate an exception when the NIF library is not loaded, Dialyzer does not generate false
warnings.

erlang:nif error(Reason, Args) -> no return()
Types:
Reason = term()
Args = [term()]
Works exactly like er r or / 2, but Dialyzer thinks that this BIF will return an arbitrary term. When used in a stub

function for a NIF to generate an exception when the NIF library is not loaded, Dialyzer does not generate false
warnings.

node() -> Node
Types.
Node = node()
Returns the name of the local node. If the nodeis not alive, nonode@ohost isreturned instead.

Allowed in guard tests.

node(Arg) -> Node

Types.
Arg = pid() | port() | reference()
Node = node()

Returns the node where Ar g originates. Ar g can be a processidentifier, areference, or aport. If Ar g originatesfrom
the local node and the local node is not alive, nonode@ohost isreturned.

Allowed in guard tests.

nodes() -> Nodes
Types:
Nodes = [node()]

Returns a list of all nodes connected to this node through normal connections (that is, hidden nodes are not listed).
Same as nodes(visible).

nodes(Arg) -> Nodes

Types:
Arg = NodeType | [NodeTypel
NodeType = visible | hidden | connected | this | known
Nodes = [node()]

Returns alist of nodes according to the argument specified. The returned result, when the argument isalist, isthe list
of nodes satisfying the digunction(s) of the list elements.

NodeTypes:
visible

Nodes connected to this node through normal connections.

220 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

hi dden
Nodes connected to this node through hidden connections.
connect ed
All nodes connected to this node.
this
This node.
known

Nodes that are known to this node. That is, connected nodes and nodes referred to by process
identifiers, port identifiers, and references located on this node. The set of known nodes is
garbage collected. Notice that this garbage collection can be delayed. For more information, see
erl ang: system i nf o(del ayed_node_t abl e_gc) .

Some equalities: [node()] = nodes(this),nodes(connected) = nodes([visible, hidden]),
andnodes() = nodes(visible).

now() -> Timestamp
Types:
Timestamp = timestamp()

timestamp() =
{MegaSecs :: integer() >= 0,
Secs :: integer() >= 0,
MicroSecs :: integer() >= 0}

Thisfunction is deprecated. Do not useit.

For more information, see section Time and Time Correction in the User's Guide. Specifically, section Dos and
Dont's describes what to use instead of er | ang: now 0.

Returnsthetuple{ MegaSecs, Secs, M croSecs},whichistheelapsedtimesince00:00 GMT, January 1, 1970
(zero hour), if provided by the underlying OS. Otherwise some other point in timeis chosen. It is also guaranteed that
the following calls to this BIF return continuously increasing values. Hence, the return value from er | ang: now 0
can be used to generate unique time stamps. If it is called in atight loop on a fast machine, the time of the node can
become skewed.

Can only be used to check the local time of day if the time-zone information of the underlying OS is properly
configured.

open_port(PortName, PortSettings) -> port()
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 221

erlang

PortName =
{spawn, Command :: string() | binary()} |
{spawn _driver, Command :: string() | binary()} |
{spawn_executable, FileName :: file:name all()} |

{fd, In :: integer() >= 0, Out :: integer() >= 0}
PortSettings = [Opt]
Opt =

{packet, N :: 1 | 2 | 4} |
stream |

{line, L :: integer() >= 0} |

{cd, Dir :: string() | binary()} |

{env,

Env ::

[{Name :: os:env_var name(),
Val :: os:env_var value() | false}l} |

{args, [string() | binary()I} |

{arg0, string() | binary()} |
exit status | use stdio | nouse stdio | stderr to stdout |
in | out | binary | eof |

{parallelism, Boolean :: boolean()} |

hide |

{busy limits port,

{integer() >= 0, integer() >= 0} | disabled} |
{busy limits msgq,

{integer() >= 0, integer() >= 0} | disabled}

Returns a port identifier as the result of opening a new Erlang port. A port can be seen as an external Erlang process.

The name of the executable as well as the arguments specifed in cd, env, ar gs, and ar g0 are subject to Unicode
filename trandation if the system is running in Unicode filename mode. To avoid trandation or to force, for example
UTF-8, supply the executable and/or arguments as a binary in the correct encoding. For details, see the module
file(3),thefunctionfil e: nati ve_nane_encodi ng/ 0inKernel,andtheUsi ng Uni code i n Erl ang
User's Guide.

The charactersinthename (if specified asalist) can only be> 255 if the Erlang virtual machineisstarted in Unicode
filename trand ation mode. Otherwise the name of the executableis limited to the SO Latin-1 character set.

Por t Nanes:
{spawn, Comand}

Starts an external program. Comrand is the name of the external program to be run. Contrand runs outside the
Erlang work space unless an Erlang driver with the name Conmmand is found. If found, that driver is started. A
driver runsin the Erlang work space, which meansthat it is linked with the Erlang runtime system.

For external programs, PATH is searched (or an equivalent method is used to find programs, depending on the
0S). Thisis done by invoking the shell on certain platforms. The first space-separated token of the command is
considered as the name of the executable (or driver). This (among other things) makes this option unsuitable for
running programs with spacesin filenames or directory names. If spacesin executable filenames are desired, use
{spawn_execut abl e, Command} instead.

222 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{spawn_driver, Command}

Workslike{ spawn, Commuand}, but demandsthefirst (space-separated) token of the command to be the name
of aloaded driver. If no driver with that name isloaded, abadar g error israised.

{spawn_execut abl e, Fil eNane}

Workslike{ spawn, Fi | eNane}, but only runs external executables. Fi | eNane initswholeis used asthe
name of the executable, including any spaces. If arguments are to be passed, the Por t Setti ngs ar gs and
ar g0 can be used.

The shell isusually not invoked to start the program, it is executed directly. PATH (or equivalent) is not searched.
To find aprogram in PATHto execute, use os: fi nd_execut abl e/ 1.

Only if ashell script or . bat file is executed, the appropriate command interpreter is invoked implicitly, but
thereis still no command-argument expansion or implicit PATH search.

If Fi | eName cannot be run, an error exception is raised, with the POSIX error code as the reason. The error
reason can differ between OSs. Typically the error enoent israised when an attempt is made to run a program
that is not found and eacces israised when the specified file is not executable.

{fd, In, CQut}
Allows an Erlang process to access any currently opened file descriptors used by Erlang. The file descriptor | n

can be used for standard input, and the file descriptor Qut for standard output. It isonly used for various servers
inthe Erlang OS (shel | and user). Hence, itsuseis limited.

Port Setti ngs isalist of settings for the port. The valid settings are as follows:

{packet, N}

Messages are preceded by their length, sent in N bytes, with the most significant byte first. The valid values for
Narel, 2, and 4.

stream

Output messages are sent without packet lengths. A user-defined protocol must be used between the Erlang
process and the external object.

{line, L}

Messages are delivered on a per line basis. Each line (delimited by the OS-dependent newline sequence) is
delivered in a single message. The message data format is{ Fl ag, Li ne}, where Fl ag iseol or noeol ,
and Li ne isthe data delivered (without the newline sequence).

L specifiesthe maximum linelength in bytes. Lineslonger than this are delivered in more than one message, with
Fl ag set to noeol for al but the last message. If end of file is encountered anywhere else than immediately
following a newline sequence, the last line is also delivered with FI ag set to noeol . Otherwise lines are
delivered with Fl ag setto eol .

The{packet, N} and{line, L} settingsare mutually exclusive.
{cd, Dir}

Only valid for { spawn, Conmand} and { spawn_execut abl e, Fi | eNane}. The external program
startsusing Di r asitsworking directory. Di r must be a string.

{env, Env}

Types:

Nane = os:env_var_nane()

Val os:env_var_value() | false
Env [{Nanme, Val}]

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 223

erlang

Only valid for { spawn, Conmand}, and { spawn_execut abl e, Fi | eNanme}. The environment of the
started process is extended using the environment specificationsin Env.

Env isto be alist of tuples{ Nane, Val }, where Nane isthe name of an environment variable, and Val is
the value it is to have in the spawned port process. Both Nane and Val must be strings. The one exception is
Val beingtheatomf al se (in analogy with os: get env/ 1, which removes the environment variable.

For information about encoding requirements, see documentation of the types for Nane and Val .

{args, [string() | binary() 1}

Only valid for { spawn_execut abl e, Fil eNane} and specifies arguments to the executable. Each
argument is specified as a separate string and (on Unix) eventually ends up as one element each in the argument
vector. On other platforms, asimilar behavior is mimicked.

The arguments are not expanded by the shell before they are supplied to the executable. Most notably
this means that file wildcard expansion does not occur. To expand wildcards for the arguments, use
filelib:wldcard/ 1. Noticethatevenif theprogramisaUnix shell script, meaning that the shell ultimately
is invoked, wildcard expansion does not occur, and the script is provided with the untouched arguments. On
Windows, wildcard expansion is always up to the program itself, therefore thisis not an issue.

The executable name (also known as ar gv[0]) is not to be specified in this list. The proper executable name
isautomatically used asar gv[0] , where applicable.

If you explicitly want to set the program name in the argument vector, option ar g0 can be used.
{arg0, string() | binary()}

Only valid for { spawn_execut abl e, Fi |l eNane} and explicitly specifies the program name argument
when running an executable. This can in some circumstances, on some OSs, be desirable. How the program
responds to thisis highly system-dependent and no specific effect is guaranteed.

exit_status

Only valid for {spawn, Command}, where Command refers to an external program, and for
{spawn_execut abl e, Fil eNane}.

When the external process connected to the port exits, a message of the form {Port,
{exit_status, Status}} issenttothe connected process, where St at us isthe exit status of the external
process. If the program aborts on Unix, the same convention is used as the shellsdo (that is, 128+signal).

If option eof isspecified also, the messageseof andexi t _st at us appear in an unspecified order.
If the port program closesits st dout without exiting, option exi t _st at us does not work.
use_stdio

Onlyvaidfor{spawn, Comrmand} and{spawn_execut abl e, Fi | eNane}. Italowsthestandardinput
and output (file descriptors 0 and 1) of the spawned (Unix) process for communication with Erlang.

nouse_stdio
The opposite of use_st di o. It uses file descriptors 3 and 4 for communication with Erlang.
stderr_to_stdout

Affects ports to external programs. The executed program gets its standard error file redirected to its standard
output file. st derr _t o_st dout and nouse_st di o are mutually exclusive.

over | apped_io

Affects portsto external programs on Windows only. The standard input and standard output handles of the port
program are, if this option is supplied, opened with flag FI LE_FLAG_OVERLAPPED, so that the port program
can (and must) do overlapped 1/0 onits standard handles. Thisis not normally the case for simple port programs,

224 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

but an option of value for the experienced Windows programmer. On all other platforms, thisoption issilently
discarded.

The port can only be used for input.
out

The port can only be used for output.
bi nary

All 1/O from the port is binary data objects as opposed to lists of bytes.
eof

The port is not closed at the end of the file and does not produce an exit signal. Instead, it remains open and a
{Port, eof} messageis sent to the process holding the port.

hi de
When running on Windows, suppresses creation of a new console window when spawning the port program.
(This option has no effect on other platforms.)

{paral |l elism Bool ean}

Sets scheduler hint for port parallelism. If settot r ue, the virtual machine schedules port tasks; when doing so, it
improves parallelism in the system. If settof al se, the virtual machine triesto perform port tasksimmediately,
improving latency at the expense of parallelism. The default can be set at system startup by passing command-
lineargument +spp toerl (1) .

{busy limts_port, {Low, Hi gh} | disabled}
Sets limits that will be used for controlling the busy state of the port.

When the ports internal output queue size becomes larger than or equal to Hi gh bytes, it enters the busy state.
When it becomeslessthan Lowbytesit leavesthe busy state. When the port isin the busy state, processes sending
commandstoit will be suspended until the port |eavesthe busy state. Commandsarein thiscontext either Por t !
{Onner, {conmand, Data}} orport_conmand/[2, 3].

TheLowlimitisautomatically adjustedtothesameasHi gh if itisset larger then Hi gh. Valid range of valuesfor
LowandHi ghis[1, (1 bsl (8*erlang:system.i nfo(wordsize)))-2].Iftheaomdi sabl ed
is passed, the port will never enter the busy state.

The defaultsareLow = 4096 and Hi gh = 8192.

Note that this option is only valid when spawning an executable (port program) by opening the spawn driver
and when opening the f d driver. This option will cause afailure with abadar g exception when opening other
drivers.

{busy_ limts_msgq, {Low, Hi gh} | disabled}
Sets limits that will be used for controlling the busy state of the port message queue.

When the ports message queue size becomes larger than or equal to Hi gh bytesit entersthe busy state. When it
becomeslessthan Lowbytesit leaves the busy state. When the port message queue isin the busy state, processes
sending commandsto it will be suspended until the port message queue leaves the busy state. Commands are in
this context either Port ! {Owner, {command, Data}} orport_conmand/[2, 3].

TheLowlimitisautomatically adjustedtothesameasHi gh if itisset larger then Hi gh. Valid range of valuesfor
LowandHi ghis[1, (1 bsl (8*erlang:system.i nfo(wordsize)))-2].Iftheaomdi sabl ed
is passed, the port message queue will never enter the busy state.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 225

erlang

Note that if the driver statically has disabled the use of this feature, a failure with abadar g exception will be
raised unless this option also is set to di sabl e or not passed at all.

The defaultsareLow = 4096 and Hi gh = 8192 unlessthe driver itself does modifications of these values.
Note that the driver might fail if it also adjust these limits by itself and you have disabled this feature.

The spawn driver (used when spawning an executable) and the f d driver do not disable this feature and do not
adjust these limits by themselves.

For more information see the documentationer | _drv_busy _nmsgq_limts().
Default isst r eamfor all port typesand use_st di o for spawned ports.

Failure: if the port cannot be opened, the exit reasonisbadar g, syst em | i mi t , or the POSIX error code that most
closely describesthe error, or ei nval if no POSIX codeis appropriate:

badar g
Bad input argumentsto open_port .
systemlimt
All available portsin the Erlang emulator arein use.
enomem
Not enough memory to create the port.
eagain
No more available OS processes.
enanet ool ong
Too long external command.
enfile
No more available file descriptors (for the OS process that the Erlang emulator runsin).
enfile
Full file table (for the entire OS).
eacces
Conmand specified in{ spawn_execut abl e, Command} does not point out an executablefile.
enoent
Fi | eName specifiedin{spawn_execut abl e, Fi | eNanme} does not point out an existing file.

During use of aport opened using { spawn, Nane}, {spawn_dri ver, Name}, or{spawn_execut abl e,
Nane}, errors arising when sending messages to it are reported to the owning process using signals of the form
{"EXIT, Port, PosixCode}.Forthepossiblevaluesof Posi xCode, seefil e(3).

The maximum number of ports that can be open at the same time can be configured by passing command-line flag
+Qtoerl (1).

erlang:phash(Term, Range) -> Hash
Types.
Term = term()
Range = Hash = integer() >=1
Range = 1..2732, Hash = 1..Range

This function is deprecated as erl ang: phash2/2 should be used for new code. Note that
erl ang: phash(X, N) isnot necessary equa to er | ang: phash2(X, N)

226 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Portable hash function that gives the same hash for the same Erlang term regardless of machine architecture and
ERTSversion (the BIF wasintroduced in ERTS 4.9.1.1). The function returns ahash value for Ter mwithin the range
1. . Range. The maximum value for Range is 2"32.

erlang:phash2(Term) -> Hash
erlang:phash2(Term, Range) -> Hash
Types.

Term = term()

Range = integer() >=1

1..2"32
Hash = integer() >= 0
0..Range-1

Portable hash function that gives the same hash for the same Erlang term regardless of machine architecture and
ERTS version (the BIF was introduced in ERTS 5.2). The function returns a hash value for Ter mwithin the range
0. . Range- 1. The maximum value for Range is 232. When without argument Range, a value in the range
0..2727-1 is returned.

This BIF is always to be used for hashing terms. It distributes small integers better than phash/ 2, and it is faster
for bignums and binaries.

Notice that therange 0. . Range- 1 isdifferent from the range of phash/ 2, whichis1. . Range.

pid to list(Pid) -> string()
Types:
Pid = pid()
Returns a string corresponding to the text representation of Pi d. Example:

> erlang:pid to list(self()).
"<0.85.0>"

The creation for the node is not included in the list representation of Pi d. This means that processes in different
incarnations of a node with a specific name can get the same list representation.

erlang:port call(Port, Operation, Data) -> term()
Types:

Port = port() | atom()

Operation = integer()

Data = term()

Performs a synchronous call to a port. The meaning of Qper at i on and Dat a depends on the port, that is, on the
port driver. Not all port drivers support this feature.

Por t isaport identifier, referring to adriver.

Oper at i on isaninteger, which is passed on to the driver.

Dat a isany Erlang term. This datais converted to binary term format and sent to the port.
Returns aterm from the driver. The meaning of the returned data also depends on the port driver.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 227

erlang

Failures:

badar g
If Por t isnot an identifier of an open port, or the registered name of an open port. If the calling process
was previoudly linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be
delivered before thisbadar g exception occurs.

badar g

If Oper at i on does not fit in a 32-bit integer.
badar g

If the port driver does not support synchronous control operations.
badar g

If the port driver so decides for any reason (probably something wrong with Oper at i on or Dat a).

Do not call port _cal | with an unknown Por t identifier and expect badar g exception. Any undefined
behavior ispossible (including node crash) depending on how the port driver interpretsthe supplied arguments.

port close(Port) -> true
Types:
Port = port() | atom()

Closes an open port. Roughly thesameasPort | {sel f(), cl ose} exceptfortheerror behavior (see below),
being synchronous, and that the port does not reply with { Port, cl osed}. Any process can close a port with
port cl ose/ 1, notonly the port owner (the connected process). If the calling processislinked to the port identified
by Por t , the exit signal from the port is guaranteed to be delivered before port _cl ose/ 1 returns.

For comparison: Port ! {sel f(), cl ose} onlyfailswithbadar gif Port doesnot refer to aport or aprocess.
If Port isaclosed port, nothing happens. If Port isan open port and the calling processis the port owner, the port
replieswith{ Port, cl osed} whenall buffers have been flushed and the port really closes. If the calling process
is not the port owner, the port owner failswith badsi g.

Notice that any process can closeaport using Port ! {Port Omer, cl ose} asifititself wasthe port owner,
but the reply always goes to the port owner.

Asfrom Erlang/OTPR16, Port ! {Port Omer, cl ose} istruly asynchronous. Notice that this operation has
always been documented as an asynchronous operation, while the underlying implementation has been synchronous.
port _cl ose/ 1 ishowever still fully synchronous because of its error behavior.

Failure: badar g if Port isnot an identifier of an open port, or the registered name of an open port. If the calling
process was previoudly linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be
delivered before thisbadar g exception occurs.

port command(Port, Data) -> true

Types:
Port = port() | atom()
Data = iodatal()

Sends datato aport. SameasPort ! {Port Ower, {comrand, Data}} exceptfor the error behavior and
being synchronous (see below). Any process can send datato aport withport _command/ 2, not only the port owner
(the connected process).

For comparison: Port ! {Port Owner, {conmand, Data}} onlyfailswithbadar g if Port doesnot refer
to aport or aprocess. If Port isaclosed port, the data message disappears without a sound. If Port is open and

228 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

the calling processis not the port owner, the port owner failswith badsi g. The port owner failswith badsi g aso
if Dat a isaninvalid 1/O list.

Notice that any process can send to aport using Port ! {Port Omer, {conmand, Data}} asif ititself
was the port owner.

If the port is busy, the calling process is suspended until the port is not busy any more.

Asfrom Erlang/OTPR16, Port ! {Port Omer, {command, Data}} istruly asynchronous. Noticethat this
operation has always been documented as an asynchronous operation, while the underlying implementation has been
synchronous. port _commrand/ 2 ishowever still fully synchronous because of its error behavior.

Failures:
badar g

If Port isnot an identifier of an open port, or the registered name of an open port. If the calling process was
previously linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be delivered
before thisbadar g exception occurs.

badar g
If Dat a isaninvalid I/O list.

Do not send data to an unknown port. Any undefined behavior is possible (including node crash) depending on
how the port driver interprets the data.

port command(Port, Data, OptionList) -> boolean()

Types.
Port = port() | atom()
Data = iodata()

Option = force | nosuspend
OptionList = [Option]

Sends datato aport. port _command(Port, Data, []) equalsport_command(Port, Data).

If the port command is aborted, f al se isreturned, otherwiset r ue.

If the port is busy, the calling process is suspended until the port is not busy anymore.

Options:

force
The calling processis not suspended if the port is busy, instead the port command is forced through. The call
failswith anot sup exception if the driver of the port does not support this. For more information, see driver
flag ERL_DRV_FLAG SOFT_BUSY.

nosuspend

The calling process is not suspended if the port is busy, instead the port command isaborted and f al se is
returned.

More options can be added in afuture release. |

Failures:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 229

erlang

badar g
If Port isnot anidentifier of an open port, or the registered name of an open port. If the calling process
was previoudly linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be
delivered before thisbadar g exception occurs.

badar g

If Dat a isaninvalid I/O list.
badar g

If Opti onLi st isaninvalid option list.
not sup

If option f or ce has been passed, but the driver of the port does not allow forcing through a busy port.

Do not send data to an unknown port. Any undefined behavior is possible (including node crash) depending on
how the port driver interprets the data.

port connect(Port, Pid) -> true

Types.
Port = port() | atom()
Pid = pid()

Sets the port owner (the connected port) to Pi d. Roughly thesameasPort ! {Oaner, {connect, Pid}}
except for the following:

* Theerror behavior differs, see below.

e Theport doesnot reply with { Por t , connect ed}.
e port_connect/ 1 issynchronous, see below.

» Thenew port owner gets linked to the port.

The old port owner stays linked to the port and must call unl i nk(Por t) if thisisnot desired. Any process can set
the port owner to be any processwith port _connect/ 2.

For comparison: Port ! {self(), {connect, Pid}} onlyfalswithbadarg if Port doesnot refer to a
port or a process. If Port isaclosed port, nothing happens. If Por t is an open port and the calling process is the
port owner, the port replieswith { Por t , connect ed} totheold port owner. Notice that the old port owner is till
linked to the port, while the new is not. If Por t isan open port and the calling processis not the port owner, the port
owner failswith badsi g. The port owner failswith badsi g asoif Pi d isnot an existing local process identifier.

Notice that any process can set the port owner using Port | {Port Omer, {connect, Pid}} asifititself
was the port owner, but the reply always goes to the port owner.

Asfrom Erlang/OTPR16, Port ! {Port Oaner, {connect, Pid}} istruly asynchronous. Notice that this
operation has always been documented as an asynchronous operation, while the underlying implementation has been
synchronous. port _connect / 2 ishowever still fully synchronous because of its error behavior.

Failures:

badar g
If Port isnot anidentifier of an open port, or the registered name of an open port. If the calling process
was previously linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be
delivered before thisbadar g exception occurs.

badar g
If the processidentified by Pi d isnot an existing local process.

230 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

port control(Port, Operation, Data) -> iodata() | binary()
Types.

Port = port() | atom()

Operation = integer()

Data = iodata()

Performs a synchronous control operation on a port. The meaning of Gper at i on and Dat a depends on the port,
that is, on the port driver. Not all port drivers support this control feature.

Returns alist of integersin the range 0..255, or a binary, depending on the port driver. The meaning of the returned
data also depends on the port driver.

Failures:

badar g
If Por t isnot an open port or the registered name of an open port.
badar g
If Oper at i on cannot fit in a 32-bit integer.
badar g
If the port driver does not support synchronous control operations.
badar g
If the port driver so decides for any reason (probably something wrong with Oper at i on or Dat a).

War ning:

Do not call port _control /3 with an unknown Port identifier and expect badar g exception. Any
undefined behavior is possible (including node crash) depending on how the port driver interprets the supplied
arguments.

erlang:port info(Port) -> Result

Types.
Port = port() | atom()
ResultItem =

{registered name, RegisteredName :: atom()} |

{id, Index :: integer() >= 0} |

{connected, Pid :: pid()} |

{links, Pids :: [pid()1} |

{name, String :: string()} |

{input, Bytes :: integer() >= 0} |

{output, Bytes :: integer() >= 0} |

{os_pid, OsPid :: integer() >= 0 | undefined}
Result = [ResultItem] | undefined

Returns a list containing tuples with information about Por t , or undef i ned if the port is not open. The order
of the tuples is undefined, and all the tuples are not mandatory. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforeport _i nf o/ 1 returns
undef i ned.

The result contains information about the following | t ens:
e registered_nane (if the port has aregistered name)
e id

e connected

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 231

erlang

 links
* nane
* input
* out put

For more information about the different | t ens, seeport _i nf o/ 2.
Failure: badar g if Por t isnot aloca port identifier, or an atom.

erlang:port info(Port, Item :: connected) ->
{connected, Pid} | undefined
Types:
Port = port() | atom()
Pid = pid()

Pi d isthe processidentifier of the process connected to the port.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undefi ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: id) -> {id, Index} | undefined
Types:
Port = port() | atom()
Index = integer() >= 0
I ndex istheinternal index of the port. Thisindex can be used to separate ports.
If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was

previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undefi ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: input) ->
{input, Bytes} | undefined
Types:
Port = port() | atom()
Bytes = integer() >= 0
Byt es isthetotal number of bytes read from the port.
If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was

previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: links) -> {links, Pids} | undefined
Types.

232 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Port port() | atom()
Pids [pid()]

Pi ds isalist of the process identifiers of the processes that the port is linked to.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Por t isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: locking) ->
{locking, Locking} | undefined

Types:

Port = port() | atom()

Locking = false | port level | driver level
Locki ng isone of the following:

« port_|evel (port-specificlocking)

e driver_level (driver-specific locking)

Notice that these results are highly implementation-specific and can change in a future release.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was

previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undefi ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: memory) ->
{memory, Bytes} | undefined

Types:

Port = port() | atom()

Bytes = integer() >= 0
Byt es isthe total number of bytes allocated for this port by the runtime system. The port itself can have allocated
memory that is not included in Byt es.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: monitors) ->
{monitors, Monitors} | undefined

Types.
Port = port() | atom()
Monitors = [{process, pid()}]

Moni t or s represent processes monitored by this port.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 233

erlang

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: monitored by) ->
{monitored by, MonitoredBy} | undefined

Types:
Port = port() | atom()
MonitoredBy = [pid()]
Returns list of pids that are monitoring given port at the moment.
If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was

previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undefi ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: name) -> {name, Name} | undefined
Types:
Port = port() | atom()

Name string()

Nare isthe command name set by open_port/ 2.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Por t isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: os pid) ->
{os pid, OsPid} | undefined
Types:
Port = port() | atom()
OsPid = integer() >= 0 | undefined
CsPi d is the process identifier (or eguivalent) of an OS process created with open_port ({spawn |

spawn_execut abl e, Command}, Options). If the port is not the result of spawning an OS process, the
valueisundef i ned.

If the port identified by Por t isnot open, undef i ned is returned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: output) ->
{output, Bytes} | undefined
Types:
Port = port() | atom()
Bytes = integer() >= 0
Byt es is the total number of bytes written to the port from Erlang processes using port command/ 2,
port _command/ 3,orPort ! {Owner, {command, Data}.

234 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port _info(Port, Item :: parallelism) ->
{parallelism, Boolean} | undefined

Types:
Port = port() | atom()
Boolean = boolean()

Bool ean correspondsto the port parallelism hint used by this port. For moreinformation, seeoptionpar al | el i sm
of open_port/ 2.

erlang:port info(Port, Item :: queue size) ->
{queue size, Bytes} | undefined
Types:
Port = port() | atom()
Bytes = integer() >= 0
Byt es isthetotal number of bytes queued by the port using the ERTS driver queue implementation.
If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was

previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Port isnot alocal port identifier, or an atom.

erlang:port info(Port, Item :: registered name) ->
{registered name, RegisteredName} |
[1 | undefined

Types.
Port = port() | atom()
RegisteredName = atom()

Regi st er edNane isthe registered name of the port. If the port has no registered name, [] is returned.

If the port identified by Por t isnot open, undef i ned isreturned. If the port is closed and the calling process was
previously linked to the port, the exit signal from the port is guaranteed to be delivered beforepor t _i nf o/ 2 returns
undef i ned.

Failure: badar g if Por t isnot alocal port identifier, or an atom.

port to list(Port) -> string()
Types:
Port = port()
Returns a string corresponding to the text representation of the port identifier Por t .

erlang:ports() -> [port()]
Returns alist of port identifiers corresponding to all the ports existing on the local node.
Notice that an exiting port exists, but is not open.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 235

erlang

pre _loaded() -> [module()]

Returnsalist of Erlang modulesthat are preloaded in the run-time system. Pre-loaded modul es are Erlang modul es that
are needed to bootstrap the system to load the first Erlang modules from either disk or by usinger | _boot _server.

erlang:process display(Pid, Type) -> true
Types:
Pid = pid()
Type = backtrace
Writes information about the local process Pi d on standard error. The only allowed value for the atom Type is

backt r ace, which shows the contents of the call stack, including information about the call chain, with the current
function printed first. The format of the output is not further defined.

process flag(Flag :: trap exit, Boolean) -> 0ldBoolean
Types:
Boolean = 0ldBoolean = boolean()
Whentrap_exit issettot r ue, exit signalsarrivingto aprocessareconvertedto{' EXI T', From Reason}
messages, which can bereceived asordinary messages. If t r ap_exi t issettof al se, the processexitsif it receives

an exit signal other than nor mal and the exit signal is propagated to its linked processes. Application processes are
normally not to trap exits.

Returns the old value of the flag.
Seeadsoexit/ 2.

process flag(Flag :: error handler, Module) -> OldModule
Types.
Module = OldModule = atom()

Used by a process to redefine the error handler for undefined function calls and undefined registered processes.
Inexperienced users are not to use thisflag, as code auto-loading depends on the correct operation of the error handling
module.

Returns the old value of the flag.

process flag(Flag :: fullsweep after, FullsweepAfter) ->
OldFullsweepAfter

Types:

FullsweepAfter = O0ldFullsweepAfter = integer() >= 0
Changes the maximum number of generational collections before forcing afullsweep for the calling process.
Returns the old value of the flag.

process flag(Flag :: min heap size, MinHeapSize) -> OldMinHeapSize
Types:
MinHeapSize = 0ldMinHeapSize = integer() >= 0
Changes the minimum heap size for the calling process.
Returns the old value of the flag.

236 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

process flag(Flag :: min bin vheap size, MinBinVHeapSize) ->
01dMinBinVHeapSize
Types:
MinBinVHeapSize = 0ldMinBinVHeapSize = integer() >= 0

Changes the minimum binary virtual heap size for the calling process.
Returns the old value of the flag.

process flag(Flag :: max heap size, MaxHeapSize) -> OldMaxHeapSize
Types:
MaxHeapSize = OldMaxHeapSize = max heap size()
max_heap size() =
integer() >= 0 |
#{size => integer() >= 0,
kill => boolean(),
error _logger => boolean()}

Thisflag setsthe maximum heap sizefor the calling process. If MaxHeapSi ze isaninteger, the system default values
forkill anderror_I| ogger areused.

si ze

The maximum size in words of the process. If set to zero, the heap size limit is disabled. badar g is be thrown if
thevalueissmaller thanm n_heap_si ze. Thesize check is only done when a garbage collection istriggered.

si ze isthe entire heap of the process when garbage collection istriggered. Thisincludes all generational heaps,
the process stack, any messages that are considered to be part of the heap, and any extramemory that the garbage
collector needs during collection.

si ze is the same as can be retrieved using er | ang: process_info(Pid, total heap_size),
or by adding heap _block size, old heap_block size and nbuf_size from
erl ang: process_i nfo(Pid, garbage collection_info).

kill

When set to t r ue, the runtime system sends an untrappable exit signal with reason ki | | to the process if the
maximum heap size is reached. The garbage collection that triggered the ki | | is not completed, instead the
process exits as soon as possible. When set to f al se, no exit signal is sent to the process, instead it continues
executing.

If ki |l is not defined in the map, the system default will be used. The default system default is t r ue.
It can be changed by either option +hmaxk in erl (1), or erl ang: system f | ag(max_heap_si ze,
MaxHeapSi ze) .

error_| ogger

When set to t r ue, the runtime system logs an error event vial ogger , containing details about the process
when the maximum heap sizeis reached. One log event is sent each time the limit is reached.

If error _| ogger isnot defined in the map, the system default is used. The default system default ist r ue. It
can be changed by either the option +hmaxel inter| (1), or erl ang: syst em fl ag(max_heap_si ze,
MaxHeapSi ze) .

The heap size of a process is quite hard to predict, especially the amount of memory that is used during the garbage
collection. When contemplating using this option, it is recommended to first run it in production with ki | | set to
f al se and inspect the log events to see what the normal peak sizes of the processes in the system is and then tune
the value accordingly.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 237

erlang

process flag(Flag :: message queue data, MQD) -> 0ldMQD
Types:
MQD = 0ldMQD = message queue data()
message queue data() = off _heap | on_heap
Determines how messages in the message queue are stored, as follows:
of f _heap

All messages in the message queue will be stored outside the process heap. Thisimplies that no messagesin the
message queue will be part of a garbage collection of the process.

on_heap

All messages in the message queue will eventually be placed on the process heap. They can, however, be
temporarily stored off the heap. This is how messages have always been stored up until ERTS 8.0.

Thedefault value of themessage_queue_dat a processflag isdetermined by the command-line argument +hngd
inerl (1).

If the process may potentially accumulate a large number of messages in its queue it is recommended to set the flag
valuetoof f _heap. Thisisdueto thefact that the garbage collection of aprocessthat hasalarge number of messages
stored on the heap can become extremely expensive and the process can consume large amounts of memory. The
performance of the actual message passing is, however, generally better when the flag valueison_heap.

Changing the flag val ue causes any existing messages to be moved. The move operationisinitiated, but not necessarily
completed, by the time the function returns.

Returns the old value of the flag.

process flag(Flag :: priority, Level) -> OldLevel
Types:
Level = OldLevel
priority level()

priority level()
low | normal | high | max

Sets the process priority. Level isan atom. Four priority levels exist: | ow, nor nmal , hi gh, and max. Default is
nor nal .

‘ Priority level max isreserved for internal usein the Erlang runtime system, and is not to be used by others. ‘

Internally in each priority level, processes are scheduled in around robin fashion.

Execution of processes on priority nor mal and | ow are interleaved. Processes on priority | ow are selected for
execution less frequently than processes on priority nor nal .

When runnable processes on priority hi gh exist, no processeson priority | owor nor mal are selected for execution.
Notice however that this does not mean that no processes on priority | ow or nor mal can run when processes are
running on priority hi gh. When using multiple schedulers, more processes can be running in parallel than processes
on priority hi gh. That is, al owand ahi gh priority process can execute at the same time.

When runnable processes on priority max exist, no processes on priority | ow, nor mal , or hi gh are selected for
execution. Aswith priority hi gh, processeson lower priorities can executein parallel with processes on priority max.

Scheduling is pre-emptive. Regardless of priority, a processis pre-empted when it has consumed more than a certain
number of reductions since the last time it was selected for execution.

238 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Do not depend on the scheduling to remain exactly as it is today. Scheduling is likely to be changed in a future
release to use available processor cores better.

There is no automatic mechanism for avoiding priority inversion, such as priority inheritance or priority ceilings.
When using priorities, take this into account and handle such scenarios by yourself.

Making callsfrom ahi gh priority processinto code that you has no control over can causethe hi gh priority process
towait for aprocesswith lower priority. That is, effectively decreasing the priority of thehi gh priority processduring
the call. Even if thisis not the case with one version of the code that you have no control over, it can be the case
in a future version of it. This can, for example, occur if a hi gh priority process triggers code loading, as the code
server runson priority nor nal .

Other prioritiesthan nor mal are normally not needed. When other priorities are used, use them with care, especially
priority hi gh. A process on priority hi gh isonly to perform work for short periods. Busy looping for long periods
inahi gh priority process causes most likely problems, asimportant OTP servers run on priority nor mal .

Returns the old value of the flag.

process flag(Flag :: save calls, N) -> OldN
Types:
N = 0ldN = 0..10000

N must be an integer in the interval 0..10000. If N > 0, call saving is made active for the process. This means that

information about the N most recent global function calls, BIF cals, sends, and receives made by the process are saved

inalist, which can beretrieved withpr ocess_i nfo(Pi d, | ast_cal | s).A global functioncall isoneinwhich

the module of the function is explicitly mentioned. Only afixed amount of information is saved, as follows:

e Atuple{Mdul e, Function, Arity} forfunctioncalls

e Theatomssend,' receive' ,andti meout for sendsandreceives(' r ecei ve' whenamessageisreceived
andti meout when areceive times out)

If N=0, call saving is disabled for the process, which is the default. Whenever the size of the call saving list is set,
its contents are reset.

Returns the old value of the flag.

process flag(Flag :: sensitive, Boolean) -> OldBoolean
Types:
Boolean = 0ldBoolean = boolean()
Sets or clears flag sensi ti ve for the current process. When a process has been marked as sensitive by calling

process_flag(sensitive, true),feauresintheruntime system that can be used for examining the data or
inner working of the process are silently disabled.

Features that are disabled include (but are not limited to) the following:

* Tracing. Trace flags can still be set for the process, but no trace messages of any kind are generated. (If flag
sensi ti ve isturned off, trace messages are again generated if any trace flags are set.)

e Sequential tracing. The sequential trace token is propagated as usual, but no sequential trace messages are
generated.

process_info/ 1, 2 cannot be used to read out the message queue or the process dictionary (both are returned
as empty lists).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 239

erlang

Stack back-traces cannot be displayed for the process.
In crash dumps, the stack, messages, and the process dictionary are omitted.

If {save_cal | s, N} hasbeen set for the process, no function calls are saved to the call saving list. (The call saving
list is not cleared. Also, send, receive, and time-out events are still added to the list.)

Returns the old value of the flag.

process flag(Pid, Flag, Value) -> OldValue
Types.
Pid = pid()
Flag = save calls
Value = 0ldValue = integer() >= 0
Sets certain flags for the process Pi d, in the same manner aspr ocess_f | ag/ 2. Returnsthe old value of the flag.
Thevalid valuesfor FI ag are only a subset of those allowed in pr ocess_f | ag/ 2, namely save_cal | s.

Failure: badar g if Pi d isnot alocal process.

process info(Pid) -> Info
Types:

240 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Pid = pid()
Info = [InfoTuple] | undefined
InfoTuple = process info result item()

process info result item() =
{backtrace, Bin :: binary()} |
{binary,
BinInfo ::
[{integer() >= 0,

integer() >= 0,

integer() >= 0}]} |
{catchlevel, CatchLevel :: integer() >= 0} |
{current function,

{Module :: module(), Function :: atom(), Arity ::

undefined} |
{current location,

{Module :: module(),
Function :: atom(),
Arity :: arity(),
Location ::

[{file, Filename :: string()} |
{line, Line :: integer() >= 1}]}} |

{current stacktrace, Stack :: [stack item()]} |
{dictionary, Dictionary :: [{Key :: term(), Value ::
{error _handler, Module :: module()} |

arity()} |

{garbage collection, GCInfo :: [{atom(), integer() >= 0}]} |

{garbage collection info,

GCInfo :: [{atom(), integer() >= 0}1} |
{group leader, GroupLeader :: pid()} |
{heap size, Size :: integer() >= 0} |
{initial call, mfa()} |
{links, PidsAndPorts :: [pid() | port()1} |
{last calls, false | (Calls :: [mfa()])} |

{memory, Size :: integer() >= 0} |

{message queue len, MessageQueuelLen :: integer() >= 0} |
{messages, MessageQueue :: [term()]} |

{min heap size, MinHeapSize :: integer() >= 0} |

{min bin vheap size, MinBinVHeapSize :: integer() >= 0} |
{max_ heap size, MaxHeapSize :: max heap size()} |

{monitored by,

MonitoredBy :: [pid() | port() | nif resource()1} |

{monitors,
Monitors ::
[{process | port,
Pid ::

pid() |

port()

{RegName :: atom(), Node :: node()}}
{message queue data, MQD :: message queue data(
{priority, Level :: priority level()} |
{reductions, Number :: integer() >= 0} |
{registered name, [] | (Atom :: atom())} |

1}
)}

term()}1} |

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 241

erlang

{sequential trace token,
[1 | (SequentialTraceToken :: term())} |
{stack size, Size :: integer() >= 0} |
{status,
Status
exiting | garbage collecting | waiting | running |
runnable | suspended} |

{suspending,
SuspendeelList
[{Suspendee :: pid(),

ActiveSuspendCount :: integer() >= 0,

OQutstandingSuspendCount :: integer() >= 0}]} |
{total heap size, Size :: integer() >= 0} |
{trace, InternalTraceFlags :: integer() >= 0} |
{trap_exit, Boolean :: boolean()}

priority level() = low | normal | high | max

stack item() =
{Module :: module(),

Function :: atom(),
Arity :: arity() | (Args :: [term()]),
Location ::

[{file, Filename :: string()} |
{line, Line :: integer() >= 1}1}
max_heap size() =
integer() >= 0 |
#{size => integer() >= 0,
kill => boolean(),
error logger => boolean()}

message queue data() = off heap | on_heap

Returns a list containing | nf oTupl es with miscellaneous information about the process identified by Pi d, or
undef i ned if the processis not alive.

The order of the | nf oTupl esisundefined and al | nf oTupl esare not mandatory. The | nf oTupl es part of the
result can be changed without prior notice.

Thel nf oTupl eswith the following items are part of the result:

e current_function
e initial _call

e status
e nmessage_queue_ | en
e |inks

e« dictionary

e trap_exit

e« error_handl er

e priority
 group_| eader

e total heap_size
 heap_size

e stack_size

242 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

e reductions
e garbage_coll ection

If the process identified by Pi d has a registered name, aso an | nf oTupl e with item r egi st er ed_nane is
included.

For information about specific | nf oTupl es, seeprocess_i nf o/ 2.

| This BIF isintended for debugging only. For all other purposes, use pr ocess_i nf o/ 2. |

Failure: badar g if Pi d isnot alocal process.

process _info(Pid, Item) -> InfoTuple | [] | undefined
process info(Pid, ItemList) -> InfoTupleList | [] | undefined
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 243

erlang

Pid = pid()

ItemList = [Item]

Item = process info item()

InfoTupleList = [InfoTuple]

InfoTuple = process info result item()

process info item() =
backtrace | binary | catchlevel | current function |
current location | current stacktrace | dictionary |
error_handler | garbage collection | garbage collection info |
group_leader | heap size | initial call | links | last calls |
memory | message queue len | messages | min_heap size |
min_bin vheap size | monitored by | monitors |
message queue data | priority | reductions | registered name |
sequential trace token | stack size | status | suspending |
total heap size | trace | trap_exit

process info result item() =
{backtrace, Bin :: binary()} |
{binary,
BinInfo ::
[{integer() >= 0,
integer() >= 0,
integer() >= 0}1} |
{catchlevel, CatchLevel :: integer() >= 0} |
{current_function,
{Module :: module(), Function :: atom(), Arity :: arity()} |
undefined} |
{current location,

{Module :: module(),
Function :: atom(),
Arity :: arity(),
Location ::

[{file, Filename :: string()} |
{line, Line :: integer() >= 1}]}} |

{current stacktrace, Stack :: [stack item()]} |
{dictionary, Dictionary :: [{Key :: term(), Value :: term()}]} |
{error_handler, Module :: module()} |

{garbage collection, GCInfo :: [{atom(), integer() >= 0}]} |
{garbage collection info,

GCInfo :: [{atom(), integer() >= 0}]} |

{group leader, GrouplLeader :: pid()} |

{heap size, Size :: integer() >= 0} |

{initial call, mfa()} |

{links, PidsAndPorts :: [pid() | port()1} |

{last_calls, false | (Calls :: [mfa()])} |

{memory, Size :: integer() >= 0} |

{message queue_ len, MessageQueuelLen :: integer() >= 0} |
{messages, MessageQueue :: [term()]} |

{min _heap size, MinHeapSize :: integer() >= 0} |

{min _bin vheap size, MinBinVHeapSize :: integer() >= 0} |
{max_heap size, MaxHeapSize :: max heap size()} |

{monitored by,

244 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

MonitoredBy :: [pid() | port() | nif resource()1} |

{monitors,
Monitors ::
[{process | port,
Pid ::

pid() |

port()

{RegName :: atom(), Node :: node()}}1} |
{message queue data, MQD :: message queue data()} |
{priority, Level :: priority level()} |
{reductions, Number :: integer() >= 0} |
{registered name, [] | (Atom :: atom())} |

{sequential trace token,
[1 | (SequentialTraceToken :: term())} |
{stack size, Size :: integer() >= 0} |
{status,
Status ::
exiting | garbage collecting | waiting | running |
runnable | suspended} |

{suspending,
SuspendeelList ::
[{Suspendee :: pid(),

ActiveSuspendCount :: integer() >= 0,

OutstandingSuspendCount :: integer() >= 0}]} |
{total heap size, Size :: integer() >= 0} |
{trace, InternalTraceFlags :: integer() >= 0} |
{trap _exit, Boolean :: boolean()}

stack item() =

{Module :: module(),
Function :: atom(),
Arity :: arity() | (Args :: [term()]),
Location ::

[{file, Filename :: string()} |
{line, Line :: integer() >= 1}1}
priority level() = low | normal | high | max
max_heap size() =
integer() >= 0 |
#{size => integer() >= 0,
kill => boolean(),
error _logger => boolean()}

message queue data() = off heap | on_heap

Returns information about the processidentified by Pi d, asspecifiedby | t emor | t enlLi st . Returnsundef i ned
if the processisnot alive.

If the processis alive and asingle | t emis specified, the returned value is the corresponding | nf oTupl e, unless
Item =: = regi st ered_nane and the process has no registered name. Inthiscase, [] isreturned. This strange
behavior is because of historical reasons, and is kept for backward compatibility.

If It enli st isspecified, theresult is| nf oTupl eLi st. Thel nf oTupl esin | nf oTupl eLi st areincluded
with the corresponding | t enrs in the same order as the | t ens were included in | t enLi st . Valid | t ens can be
included multipletimesin| t enLi st .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 245

erlang

Getting process informations follows the signal ordering guarantees described in the Processes Chapter in the Erlang
Reference Manual.

Ifregi stered_naneispartof | t enLi st and the process hasno nameregistered, a{ r egi st er ed_nane,
[1},1nfoTupl e will beincluded in the resulting | nf oTupl eLi st . This behavior is different when asingle
Item =: = regi st ered_nane isspecified, and when pr ocess_i nf o/ 1 isused.

Valid I nf oTupl eswith corresponding | t ens:
{backtrace, Bin}

Binary Bi n contains the same information as the output from erl ang: process_di spl ay(Pi d,
backtrace).Usebinary_to_list/1 toobtainthestring of characters from the binary.

{bi nary, Binlnfo}

Bi nl nf o is a list containing miscellaneous information about binaries on the heap of this process. This
I nf oTupl e can be changed or removed without prior notice. In the current implementation Bi nl nf o isalist
of tuples. Thetuples contain; Bi nar yl d, Bi nar ySi ze, Bi nar yRef cCount .

Depending on the value of the nessage_queue_dat a process flag the message queue may be stored on the
heap.
{catchl evel, CatchLevel}

Cat chLevel isthe number of currently active catches in this process. This | nf oTupl e can be changed or
removed without prior notice.

{current_function, {Mdule, Function, Arity} | undefi ned}

Modul e, Functi on, Ari ty isthecurrent function call of the process. Thevalueundef i ned can bereturned
if the process is currently executing native compiled code.

{current | ocation, {Mdule, Function, Arity, Location}}

Modul e, Function, Ari ty isthe current function call of the process. Locat i on is alist of two-tuples
describing the location in the source code.

{current _stacktrace, Stack}

Returns the current call stack back-trace (stacktrace) of the process. The stack has the same format as in the
cat ch part of at r y. See Thecall-stack back trace (stacktrace). The depth of the stacktraceistruncated according
tothebackt r ace_dept h system flag setting.

{dictionary, Dictionary}

Di cti onary isthe process dictionary.
{error_handl er, Mdul e}

Modul e isthe error handler module used by the process (for undefined function calls, for example).
{garbage _col |l ecti on, GCl nfo}

GCl nf o isalist containing miscellaneous information about garbage collection for this process. The content of
GCl nf o can be changed without prior notice.

{garbage _col |l ection_i nfo, GCl nfo}

GCl nf o isalist containing miscellaneous detailed information about garbage collection for this process. The
content of GCI nf o can be changed without prior notice. For details about the meaning of each item, see
gc_minor_start inerl ang:trace/ 3.

246 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{group_l eader, G ouplLeader}
G ouplLeader isthe group leader for the I/O of the process.
{heap_size, Size}

Si ze isthe size in words of the youngest heap generation of the process. This generation includes the process
stack. Thisinformation is highly implementation-dependent, and can change if the implementation changes.

{initial _call, {Mdule, Function, Arity}}
Modul e, Functi on, Ari ty istheinitial function call with which the process was spawned.
{l'i nks, Pi dsAndPort s}

Pi dsAndPor t s isalist of processidentifiers and port identifiers, with processes or ports to which the process
has alink.

{last _calls, false|Calls}

Thevalueisf al se if call saving isnot active for the process (seepr ocess_f | ag/ 3). If call savingisactive,
alistisreturned, in which the last element is the most recent called.

{menory, Size}
Si ze isthe sizein bytes of the process. Thisincludes call stack, heap, and internal structures.
{message_queue_l en, MessageQueuelen}

MessageQueuelen isthe number of messages currently in the message queue of the process. Thisisthelength
of thelist MessageQueue returned as the information item messages (see below).

{messages, MessageQueue}
MessageQueue isalist of the messages to the process, which have not yet been processed.
{m n_heap_si ze, M nHeapSi ze}
M nHeapSi ze isthe minimum heap size for the process.
{mM n_bi n_vheap_si ze, M nBi nVHeapSi ze}
M nBi nVHeapSi ze isthe minimum binary virtual heap size for the process.
{oni t ored_by, MonitoredBy}
A list of identifiersfor all the processes, ports and NIF resources, that are monitoring the process.
{noni tors, Mbnitors}

A list of monitors (started by moni t or / 2) that are active for the process. For alocal process monitor or aremote
process monitor by a process identifier, the list consists of:

{process, Pid}
Process is monitored by pid.
{process, {RegNane, Node}}
Local or remote processis monitored by name.
{port, Portld}
Local port is monitored by port id.
{port, {RegNane, Node}}
Local port is monitored by name. Please note, that remote port monitors are not supported, so Node will
always be the local node name.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 247

erlang

{message_queue_data, MY}

MD is the current value of the nessage_queue_dat a process flag, which can be either of f _heap or
on_heap. For more information, see the documentation of process_f | ag(message_queue_dat a,

MQD) .
{priority, Level}

Level is the current priority level for the process. For more information on priorities, see
process _flag(priority, Level).

{reductions, Nunber}

Nunber isthe number of reductions executed by the process.
{regi stered_name, Aton}

At omisthe registered process name. If the process has no registered name, thistupleis not present in the list.
{sequential _trace_token, [] | Sequential TraceToken}

Sequent i al Tr aceToken isthe sequential trace token for the process. This| nf oTupl e can be changed or
removed without prior notice.
{stack_size, Size}
Si ze isthe stack size, in words, of the process.
{status, Status}
St at us isthe status of the process and is one of the following:
e exiting
e garbage_collecting
e waiting (for amessage)
e running
e runnabl e (ready to run, but another processis running)
e suspended (suspended on a"busy" port or by the BIF er | ang: suspend_process/ 1, 2)
{suspendi ng, Suspendeeli st}
Suspendeeli st is a list of { Suspendee, Act i veSuspendCount ,
Qut st andi ngSuspendCount } tuples. Suspendee isthe process identifier of a process that has been, or

is to be, suspended by the process identified by Pi d through the BIF er | ang: suspend_process/ 2 or
erl ang: suspend_process/ 1.

Acti veSuspendCount is the number of times Suspendee has been suspended by Pid.
Qut st andi ngSuspendCount isthe number of not yet completed suspend requests sent by Pi d, that is:

« If ActiveSuspendCount =/= 0, Suspendee iscurrently in the suspended state.

« If Qutstandi ngSuspendCount =/ = 0, option asynchronous of
erl ang: suspend_pr ocess/ 2 has been used and the suspendee has not yet been suspended by Pi d.

Noticethat Act i veSuspendCount and Qut st andi ngSuspendCount are not the total suspend count on
Suspendee, only the parts contributed by Pi d.

{total _heap_size, Size}

Si ze isthe total size, in words, of all heap fragments of the process. This includes the process stack and any
unreceived messages that are considered to be part of the heap.

248 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{trace, Internal TraceFl ags}

I nt ernal Tr aceFl ags is an integer representing the internal trace flag for this process. This | nf oTupl e
can be changed or removed without prior notice.

{trap_exit, Bool ean}

Bool ean ist r ue if the processis trapping exits, otherwise f al se.
Notice that not all implementations support all these | t ens.
Failures:

badar g

If Pi disnotaloca process.
badar g

If I t emisaninvaliditem.

processes() -> [pid()]
Returns alist of processidentifiers corresponding to all the processes currently existing on the local node.

Noticethat an exiting process exists, but isnot alive. That is,i s_process_al i ve/ 1 returnsf al se for an exiting
process, but its process identifier is part of the result returned from pr ocesses/ 0.

Example:

> processes().
[<0.0.0>,<0.2.0>,<0.4.0>,<0.5.0>,<0.7.0>,<0.8.0>]

purge _module(Module) -> true
Types.
Module = atom()

Removes old code for Modul e. Before this BIF isused, check_process_code/ 2 isto be caled to check that
no processes execute old code in the module.

| This BIF isintended for the code server (see code(3)) and is not to be used elsewhere. |

Asfrom ERTS8.0 (Erlang/OTP 19), any lingering processesthat still executethe old codeiskilled by thisfunction.
In earlier versions, such incorrect use could cause much more fatal failures, like emulator crash.

Failure: badar g if thereisno old code for Mbdul e.

put(Key, Val) -> term()
Types:
Key = Val = term()

Adds a new Key to the process dictionary, associated with the value Val , and returns undef i ned. If Key exists,
the old value is deleted and replaced by Val , and the function returns the old value. The average time complexity for

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 249

erlang

the current implementation of thisfunction is O(1) and the worst case time complexity is O(N), where Nis the number
of itemsin the process dictionary. Example:

> X = put(name, walrus), Y = put(name, carpenter),
Z = get(name),
{X, v, z}.

{undefined,walrus, carpenter}

The values stored when put is evaluated within the scope of acat ch are not retracted if at hr owis evaluated,
or if an error occurs.

erlang:raise(Class, Reason, Stacktrace) -> badarg
Types:

Class = error | exit | throw

Reason = term()

Stacktrace = raise stacktrace() | stacktrace()

raise stacktrace() =
[{module(), atom(), arity() | [term()1} |
{function(), arity() | [term()]1}]

Raises an exception of the specified class, reason, and call stack backtrace (stacktrace).

Classiserror,exit,orthrow So, if it were not for the stacktrace, er | ang: rai se(d ass, Reason,
St acktrace) isequivaenttoer| ang: C ass(Reason) (giventhat Cl ass isavalid class).

Reason can be any term.

St ackt race isalist asprovided in atry-catch clause.

try
catch Class:Reason:Stacktrace ->
end

That is, alist of four-tuples { Modul e, Function, Arity | Args, Extralnfo}, whereMdul e and
Functi on are atoms, and the third element is an integer arity or an argument list. The stacktrace can also contain
{Fun, Args, Extralnfo} tuples, whereFun isaloca funand Ar gs isan argument list.

Element Ext r al nf o at the end is optional. Omitting it is equivalent to specifying an empty list.

The stacktrace is used as the exception stacktrace for the calling process; it is truncated to the current maximum
stacktrace depth.

As evaluating this function causes the process to terminate, it has no return value unless the arguments are invalid,
in which case the function returns the error reason badar g. If you want to be sure not to return, you can call
error(erlang:rai se(d ass, Reason, Stacktrace)) andhopeto distinguish exceptions later.

See the reference manual about errors and error handling for more information about exception classes and how to
catch exceptions.

erlang:read timer(TimerRef) -> Result
Types:

250 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

TimerRef = reference()
Time = integer() >= 0
Result = Time | false
Reads the state of atimer. Thesameascalinger | ang: read_timer (Ti merRef, []).

erlang:read timer(TimerRef, Options) -> Result | ok
Types.

TimerRef = reference()

Async = boolean()

Option = {async, Async}

Options = [Option]

Time = integer() >= 0

Result = Time | false

Reads the state of a timer that has been created by either er | ang: start _tinmer or erl ang: send_after.
Ti mer Ref identifies the timer, and was returned by the BIF that created the timer.

Opt i ons:
{async, Async}

Asynchronous request for state information. Async defaults to f al se, which causes the operation to be
performed synchronously. In this case, the Resul t isreturned by er | ang: read_ti nmer. When Async is
true,erl ang: read_ti mer sendsan asynchronousrequest for the stateinformation to the timer service that
manages the timer, and then returns ok. A message ontheformat { read_ti mer, Ti nmer Ref, Result}
issenttothecaller of er | ang: read_t i mer when the operation has been processed.

More Opt i ons can be added in the future.
If Resul t isaninteger, it represents the time in milliseconds left until the timer expires.

If Resul t isf al se, atimer corresponding to Ti mer Ref could not be found. This because the timer had expired,
or been canceled, or because Ti mer Ref never has corresponded to atimer. Even if the timer has expired, it does not
tell you whether or not the time-out message has arrived at its destination yet.

The timer service that manages the timer can be co-located with another scheduler than the scheduler that the
calling process is executing on. If so, communication with the timer service takes much longer time than if it is
located locally. If the calling processisin acritical path, and can do other things while waiting for the result of this
operation, you want to use option { async, true}.If usingoption{async, fal se},thecallingprocessis
blocked until the operation has been performed.

Seeadsoerl ang: send_after/4,erlang:start_tinmer/4,anderl ang: cancel _tinmer/?2.

ref to list(Ref) -> string()
Types.
Ref = reference()
Returns a string corresponding to the text representation of Ref .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 251

erlang

This BIF isintended for debugging and is not to be used in application programs.

register(RegName, PidOrPort) -> true
Types:
RegName = atom()
PidOrPort = port() | pid()
Registers the name RegNane with aprocessidentifier (pid) or aport identifier inthenane regi stry. RegNane,

which must be an atom, can be used instead of the pid or port identifier in send operator (RegNanme | Message)
and most other BIFs that take a pid or port identifies as an argument. Example:

> register(db, Pid).
true

The registered name is considered a Directly Visible Erlang Resource and is automatically unregistered when the
process terminates.

Failures:

badar g
If Pi dOr Port isnot an existing local process or port.
badar g
If RegNane isaready in use.
badar g
If the process or port is aready registered (already has aname).
badar g
If RegNane isthe atom undef i ned.

registered() -> [RegName]
Types:
RegName = atom()
Returns alist of names that have been registered using r egi st er / 2, for example:

> registered().
[code server, file server, init, user, my db]

erlang:resume process(Suspendee) -> true
Types:
Suspendee = pid()
Decreases the suspend count on the process identified by Suspendee. Suspendee is previously to have
been suspended through er | ang: suspend_process/ 2 or er| ang: suspend_pr ocess/ 1 by the process

cadling erl ang: resumre_pr ocess(Suspendee) . When the suspend count on Suspendee reaches zero,
Suspendee isresumed, that is, its state is changed from suspended into the state it had before it was suspended.

| This BIF isintended for debugging only. |

252 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Failures:

badar g
If Suspendee isnot aprocessidentifier.
badar g
If the process calling er | ang: r esune_pr ocess/ 1 had not previously increased the suspend count on the
processidentified by Suspendee.
badar g
If the processidentified by Suspendee isnot alive.

round (Number) -> integer()
Types:
Number = number()
Returns an integer by rounding Nurrber , for example:

round(42.1).
42

round(5.5).
6

round(-5.5).
-6

round(36028797018963969.0) .
36028797018963968

Inthelast example, r ound(36028797018963969. 0) evaluatesto 36028797018963968. Thereason for this
isthat the number 36028797018963969. 0 cannot be represented exactly as afloat value. Instead, the float literal
isrepresented as 36028797018963968. 0, which is the closest number that can be represented exactly as a float
value. See Representation of Floating Point Numbers for additional information.

Allowed in guard tests.

self() -> pid()
Returns the process identifier of the calling process, for example:

> self().
<0.26.0>

Allowed in guard tests.

erlang:send(Dest, Msg) -> Msg
Types.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 253

erlang

Dest = dst()
Msg = term()
dst() =
pid() |
reference() |

port() |
(RegName :: atom()) |
{RegName :: atom(), Node :: node()}

Sends a message and returns Msg. Thisis the same as using the send operator: Dest | Msg.

Dest can be a remote or local process identifier, an alias, a (local) port, a locally registered name, or a tuple
{ RegNane, Node} for aregistered name at another node.

Thefunction failswith abadar g run-time error if Dest isan atom name, but thisnameis not registered. Thisisthe
only case when send fails for an unreachable destination Dest (of correct type).

erlang:send(Dest, Msg, Options) -> Res
Types:

Dest = dst()

Msg = term()

Options = [nosuspend | noconnect]
Res = ok | nosuspend | noconnect
dst() =

pid() |
reference() |

port() |
(RegName :: atom()) |
{RegName :: atom(), Node :: node()}

Either sends a message and returns ok, or does not send the message but returns something else
(see below). Otherwise the same as er| ang: send/ 2. For more detailed explanation and warnings, see
erl ang: send_nosuspend/ 2, 3.

Options:

nosuspend
If the sender would have to be suspended to do the send, nosuspend isreturned instead.
noconnect
If the destination node would have to be auto-connected to do the send, noconnect isreturned instead.

Aswither| ang: send_nosuspend/ 2, 3: use with extreme care. |

erlang:send after(Time, Dest, Msg) -> TimerRef
Types.

254 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Time = integer() >= 0
Dest = pid() | atom()
Msg = term()

TimerRef = reference()

Startsatimer. Thesameascallinger | ang: send_after (Ti me, Dest, Mg, []).

erlang:send after(Time, Dest, Msg, Options) -> TimerRef
Types:

Time = integer()

Dest = pid() | atom()

Msg = term()

Options = [Option]

Abs = boolean()

Option = {abs, Abs}

TimerRef = reference()

Starts a timer. When the timer expires, the message Msg is sent to the process identified by Dest . Apart from the
format of the time-out message, this function works exactly aser | ang: start _ti mer/ 4.

erlang:send nosuspend(Dest, Msg) -> boolean()
Types:
Dest = dst()

Msg = term()
dst() =

pid() |

reference() |

port() |

(RegName :: atom()) |

{RegName :: atom(), Node :: node()}

The same as er | ang: send(Dest, Mg, [nosuspend]), butreturnstrue if the message was sent and
f al se if the message was not sent because the sender would have had to be suspended.

Thisfunction isintended for send operations to an unreliable remote node without ever blocking the sending (Erlang)
process. If the connection to the remote node (usualy not a real Erlang node, but a node written in C or Java) is
overloaded, this function does not send the message and returnsf al se.

The same occurs if Dest refersto alocal port that is busy. For al other destinations (allowed for the ordinary send
operator ' ! '), thisfunction sends the message and returnst r ue.

This function is only to be used in rare circumstances where a process communicates with Erlang nodes that can
disappear without any trace, causing the TCP buffers and the drivers queue to be over-full before the node is shut
down (because of tick time-outs) by net _ker nel . The normal reaction to take when this occurs is some kind of
premature shutdown of the other node.

Notice that ignoring the return value from this function would result in an unreliable message passing, which is
contradictory to the Erlang programming model. The messageis not sent if this function returnsf al se.

In many systems, transient states of overloaded queues are normal. Although this function returns f al se does not
mean that the other node is guaranteed to be non-responsive, it could be a temporary overload. Also, a return value
of t r ue does only mean that the message can be sent on the (TCP) channel without blocking; the message is not
guaranteed to arrive at the remote node. For a disconnected non-responsive node, the return valueist r ue (mimics

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 255

erlang

the behavior of operator !). The expected behavior and the actions to take when the function returns f al se are
application- and hardware-specific.

Use with extreme care.

erlang:send nosuspend(Dest, Msg, Options) -> boolean()
Types:
Dest = dst()
Msg = term()
Options = [n
dst() =
pid() |
reference() |

port() |
(RegName :: atom()) |
{RegName :: atom(), Node :: node()}

oconnect]

Thesameaser| ang: send(Dest, Mg, [nosuspend | Options]), butwithaBoolean returnvaue.

This function behaveslike er | ang: send_nosuspend/ 2, but takes a third parameter, alist of options. The only
optionisnoconnect , which makes the function return f al se if the remote node is not currently reachable by the
local node. The normal behavior isto try to connect to the node, which can stall the process during a short period.
The use of option noconnect makes it possible to be sure not to get the slightest delay when sending to a remote
process. Thisis especially useful when communicating with nodes that expect to always be the connecting part (that
is, nodes writtenin C or Java).

Whenever the function returnsf al se (either when a suspend would occur or when noconnect was specified and
the node was not aready connected), the message is guaranteed not to have been sent.

| Use with extreme care. |

erlang:set cookie(Cookie) -> true
Types:
Cookie = atom()

Sets the magic cookie of the local node to the atom Cooki e, which is aso the cookie for all nodes that have no
explicit cookie set with set _cooki e/ 2 Cooki e (see section Distributed Erlang in the Erlang Reference Manual
in System Documentation).

Failure: f unct i on_cl ause if theloca nodeis not dive.

erlang:set cookie(Node, Cookie) -> true
Types:

256 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Node = node()
Cookie = atom()
Sets the magic cookie for Node to the atom Cooki e. If Node isthe local node, the function sets the cookie of all

other nodes (that have no explicit cookie set with this function) to Cooki e (see section Distributed Erlang in the
Erlang Reference Manual in System Documentation).

Failure: f unct i on_cl ause if theloca nodeis not aive.

setelement(Index, Tuplel, Value) -> Tuple2
Types:

Index = integer() >=1

1..tuple_size(Tuplel)

Tuplel = Tuple2 = tuple()

Value = term()

Returns atuple that is a copy of argument Tupl el with the element specified by integer argument | ndex (the first
element is the element with index 1) replaced by argument Val ue, for example:

> setelement (2, {10, green, bottles}, red).
{10, red,bottles}

size(Item) -> integer() >= 0
Types:
Item = tuple() | binary()
Returns the number of elementsin atuple or the number of bytesin abinary or bitstring, for example:

> size({morni, mulle, bwange}).
3

> size(<<11l, 22, 33>>).

3

For bitstrings, the number of whole bytesis returned. That is, if the number of bits in the bitstring is not divisible by
8, the resulting number of bytesis rounded down.

Allowed in guard tests.
Seedsot upl e_size/ 1,byte_size/ 1l,andbit_size/ 1.

spawn(Fun) -> pid()
Types.
Fun = function()

Returnsthe processidentifier of anew process started by the application of Fun totheempty list[] . Otherwise works
like spawn/ 3.

spawn(Node, Fun) -> pid()
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 257

erlang

Node = node()
Fun = function()

Returns the process identifier of a new process started by the application of Fun to the empty list[] on Node. If
Node does not exist, ausaless pid is returned. Otherwise works like spawn/ 3.

spawn (Module, Function, Args) -> pid()
Types:
Module = module()
Function = atom()
Args = [term()]
Returns the process identifier of a new process started by the application of Modul e: Functi on to Ar gs.
error _handl er: undefi ned_function(Mdul e, Function, Args) isevauated by the new process
if Modul e: Function/ Arity does not exist (where Arity is the length of Args). The error handler can

be redefined (see process_f I ag/ 2). If error_handl er is undefined, or the user has redefined the default
error_handl er andits replacement is undefined, afailure with reason undef occurs.

Example:

> spawn(speed, regulator, [high speed, thin cut]).
<0.13.1>

spawn (Node, Module, Function, Args) -> pid()
Types:

Node = node()

Module = module()

Function = atom()

Args = [term()]

Returns the process identifier (pid) of a new process started by the application of Mbdul e: Funct i on to Ar gs on
Node. If Node does not exist, a useless pid is returned. Otherwise works like spawn/ 3.

spawn_link(Fun) -> pid()
Types:
Fun = function()

Returnsthe processidentifier of anew process started by the application of Fun to theempty list[] . A link is created
between the calling process and the new process, atomically. Otherwise works like spawn/ 3.

spawn_link(Node, Fun) -> pid()
Types:
Node = node()
Fun = function()
Returns the process identifier (pid) of anew process started by the application of Fun to the empty list[] on Node.
A link is created between the calling process and the new process, atomically. If Node does not exist, a useless

pid is returned and an exit signal with reason noconnect i on is sent to the calling process. Otherwise works like
spawn/ 3.

258 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

spawn_link(Module, Function, Args) -> pid()
Types.

Module = module()

Function = atom()

Args = [term()]

Returns the process identifier of a new process started by the application of Modul e: Functi ontoArgs. Alinkis
created between the calling process and the new process, atomically. Otherwise works like spawn/ 3.

spawn_link(Node, Module, Function, Args) -> pid()
Types.
Node = node()
Module = module()
Function = atom()
Args = [term()]
Returns the process identifier (pid) of a new process started by the application of Modul e: Funct i on to Ar gs on
Node. A link is created between the calling process and the new process, atomically. If Node does not exist, a useless

pid is returned and an exit signal with reason noconnect i on is sent to the calling process. Otherwise works like
spawn/ 3.

spawn_monitor(Fun) -> {pid(), reference()}
Types:
Fun = function()

Returnsthe processidentifier of anew process, started by the application of Fun to theempty list[] , and areference
for amonitor created to the new process. Otherwise works like spawn/ 3.

spawn_monitor(Node, Fun) -> {pid(), reference()}
Types:

Node = node()

Fun = function()

Returns the process identifier of a new process, started by the application of Fun to the empty list [] on the node
Node, and areference for amonitor created to the new process. Otherwise works like spawn/ 3.

If the node identified by Node does not support distributed spawn_noni t or (), the cal will fail with anot sup
exception.

spawn_monitor(Module, Function, Args) -> {pid(), reference()}
Types.

Module = module()

Function = atom()

Args = [term()]

A new process is started by the application of Mbdul e: Funct i on to Ar gs. The processis monitored at the same
time. Returns the process identifier and a reference for the monitor. Otherwise works like spawn/ 3.

spawn_monitor(Node, Module, Function, Args) ->

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 259

erlang

{pid(), reference()}
Types.
Node = node()
Module = module()
Function = atom()
Args = [term()]
A new process is started by the application of Mbdul e: Functi on to Ar gs on the node Node. The process is

monitored at the same time. Returns the process identifier and a reference for the monitor. Otherwise works like
spawn/ 3.

If the node identified by Node does not support distributed spawn_noni t or (), the call will fail with anot sup
exception.

spawn_opt(Fun, Options) -> pid() | {pid(), reference()}
Types:
Fun = function()
Options = [spawn opt option()]
priority level() = low | normal | high | max
max_heap size() =
integer() >= 0 |
#{size => integer() >= 0,
kill => boolean(),
error _logger => boolean()}
message queue data() = off heap | on_heap
spawn_opt option() =
link | monitor |
{monitor, MonitorOpts :: [monitor option()I} |
{priority, Level :: priority level()} |
{fullsweep after, Number :: integer() >= 0} |

{min heap size, Size :: integer() >= 0} |

{min bin vheap size, VSize :: integer() >= 0} |
{max_heap size, Size :: max heap size()} |
{message queue data, MQD :: message queue data()}

Returns the processidentifier (pid) of anew process started by the application of Fun to theempty list[] . Otherwise
workslikespawn_opt / 4

If optionmoni t or isspecified, the newly created processis monitored, and both the pid and reference for the monitor
are returned.

spawn_opt(Node, Fun, Options) -> pid() | {pid(), reference()}
Types:
Node = node()
Fun = function()
Options =
[monitor | {monitor, [monitor option()]} | link | OtherOption]
OtherOption = term()

Returns the process identifier (pid) of anew process started by the application of Fun to the empty list[] on Node.
If Node does not exist, auseless pid is returned. Otherwise works like spawn_opt / 4.

260 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Valid options depends on what options are supported by the node identified by Node. A description of valid Opt i ons
for the local node of current OTP version can be found in the documentation of spawn_opt / 4.

spawn_opt(Module, Function, Args, Options) ->
Pid | {Pid, MonitorRef}
Types:
Module = module()
Function = atom()
Args = [term()]
Options = [spawn_opt option()]
Pid = pid()
MonitorRef = reference()
priority level() = low | normal | high | max
max_heap size() =
integer() >= 0 |
#{size => integer() >= 0,
kill => boolean(),
error logger => boolean()}
message queue data() = off heap | on_heap
spawn_opt option() =
link | monitor |
{monitor, MonitorOpts :: [monitor option()1} |
{priority, Level :: priority level()} |
{fullsweep after, Number :: integer() >= 0} |

{min heap size, Size :: integer() >= 0} |

{min bin vheap size, VSize :: integer() >= 0} |
{max_heap size, Size :: max heap size()} |
{message queue data, MQD :: message queue data()}

Worksasspawn/ 3, except that an extra option list is specified when creating the process.

If optionmoni t or isspecified, the newly created processis monitored, and both the pid and reference for the monitor
are returned.

Options:
l'i nk

Setsalink to the parent process (like spawn_L| i nk/ 3 does).
noni t or

Monitors the new process (like noni t or (process, Pid) does). A{Pid, MbnitorRef} tuplewill be
returned instead of just aPi d.

{noni tor, MonitorOpts}

Monitors the new process with options (like noni t or (process, Pid, MonitorOpts) does). A{Pid,
Moni t or Ref } tuplewill be returned instead of just aPi d.

{priority, Level}

Sets the priority of the new process. Equivalent to executing pr ocess_fl ag(priority, Level) inthe
start function of the new process, except that the priority is set before the processis selected for execution for the
first time. For moreinformation on priorities, see pr ocess_fl ag(priority, Level).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 261

erlang

{full sweep_after, Number}

Useful only for performance tuning. Do not use this option unless you know that there is problem with execution
times or memory consumption, and ensure that the option improves matters.

The Erlang runtime system uses a generational garbage collection scheme, using an "old heap" for data that
has survived at least one garbage collection. When there is no more room on the old heap, a fullsweep garbage
collection is done.

Option f ul | sweep_aft er makes it possible to specify the maximum number of generational collections
before forcing afullsweep, even if thereis room on the old heap. Setting the number to zero disables the general
collection algorithm, that is, al live datais copied at every garbage collection.

A few cases when it can be useful to changef ul | sweep_after:

e If binariesthat are no longer used are to be thrown away as soon as possible. (Set Nunber to zero.)

e A process that mostly have short-lived data is fullsweeped seldom or never, that is, the old heap contains
mostly garbage. To ensure afullsweep occasionally, set Nunber to asuitable value, such as 10 or 20.

¢ Inembedded systems with alimited amount of RAM and no virtual memory, you might want to preserve
memory by setting Nurrber to zero. (The value can be set globally, seeer | ang: system fl ag/ 2.)

{m n_heap_si ze, Size}
Useful only for performance tuning. Do not use this option unless you know that there is problem with execution
times or memory consumption, and ensure that the option improves matters.

Gives a minimum heap size, in words. Setting this value higher than the system default can speed up some
processes because less garbage collection is done. However, setting atoo high value can waste memory and slow
down the system because of worse data locality. Therefore, use this option only for fine-tuning an application
and to measure the execution time with various Si ze values.

{mM n_bin_vheap_size, VSize}
Useful only for performance tuning. Do not use this option unless you know that there is problem with execution
times or memory consumption, and ensure that the option improves matters.

Gives aminimum binary virtual heap size, in words. Setting this value higher than the system default can speed
up some processes because less garbage collection is done. However, setting atoo high value can waste memory.
Therefore, use this option only for fine-tuning an application and to measure the execution time with various
VSi ze values.

{max_heap_si ze, Size}

Sets the max_heap_size process flag. The default nax_heap_size is determined by
command-line argument +hmax in erl (1). For more information, see the documentation of
process_fl ag(max_heap_si ze, Size).

{message_queue_data, MY}

Setsthe value of the nessage_queue_dat a process flag. MQD can be either of f _heap or on_heap. The
default value of thenessage _queue_dat a processflag isdetermined by the command-line argument +hgd
inerl (1) . For more information, see the documentation of pr ocess_f | ag(nmessage_queue_dat a,

MD) .
spawn_opt(Node, Module, Function, Args, Options) ->

pid() | {pid(), reference()}
Types:

262 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Node = node()
Module = module()
Function = atom()
Args = [term()]
Options =
[monitor | {monitor, [monitor_option()]} | link | OtherOption]
OtherOption = term()

Returns the process identifier (pid) of a new process started by the application of Modul e: Funct i on to Ar gs on
Node. If Node does not exist, a useless pid is returned. Otherwise works like spawn_opt / 4.

Valid options depends on what options are supported by the node identified by Node. A description of valid Opt i ons
for the local node of current OTP version can be found in the documentation of spawn_opt / 4.

spawn_request(Fun) -> Reqld
Types:

Fun = function()

ReqId = reference()

The same as the call spawn_r equest (node(), Fun, []) . That is, a spawn request on the local node with no
options.

spawn_request(Fun, Options) -> Reqld
Types:
Fun = function()
Option =
{reply tag, ReplyTag} | {reply, Reply} | spawn opt option()
ReplyTag = term()
Reply = yes | no | error_only | success only
Options = [Option]
ReqIld = reference()
Thesame asthe call spawn_r equest (node(), Fun, Opti ons) . That is, a spawn request on the local node.

spawn_request (Node, Fun) -> Reqld
Types:

Node = node()

Fun = function()

ReqIld = reference()

Thesame asthe call spawn_r equest (Node, Fun, []) . That is, a spawn request with no options.

spawn_request(Node, Fun, Options) -> ReqId
Types.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 263

erlang

Node = node()
Fun = function()
Options = [Option]
Option =
monitor |
{monitor, [monitor option()1} |
link |
{reply tag, ReplyTag} |
{reply, Reply} |
OtherOption

ReplyTag = term()

Reply = yes | no | error_only | success only
OtherOption = term()

ReqIld = reference()

Thesameasspawn_r equest (Node, er |l ang, appl y, [Fun, []], Opti ons) . Thatis, aspawn request using
the fun Fun of arity zero as entry point.

This function will fail with abadar g exception if:

* Node isnot an atom.
e Funisnot afun of arity zero.
e Options isnotaproper list of terms.

spawn_request(Module, Function, Args) -> Reqld
Types:

Module = module()

Function = atom()

Args = [term()]

Reqld = reference()

The same asthe call spawn_r equest (node(), Mbdul e, Functi on, Args, []) . That is, aspawn request on
the local node with no options.

spawn_request(Node, Module, Function, Args) -> Reqld
Types.

Node = node()

Module = module()

Function = atom()

Args = [term()]

ReqId = reference()

The same as the call spawn_r equest (Node, Modul e, Function, Args, []) . That is, a spawn request with
no options.

spawn_request(Module, Function, Args, Options) -> Reqld
Types.

264 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Module = module()
Function = atom()
Args = [term()]
Option =
{reply tag, ReplyTag} | {reply, Reply} | spawn opt option()
ReplyTag = term()
Reply = yes | no | error_only | success only
Options = [Option]
ReqIld = reference()

The same as the cal spawn_r equest (node(), Modul e, Functi on, Args, Opti ons) . That is, a spawn
reguest on the local node.

spawn_request(Node, Module, Function, Args, Options) -> Reqld
Types:
Node = node()
Module = module()
Function = atom()
Args = [term()]
Options = [Option]
Option =
monitor |
{monitor, [monitor option()1} |
link |
{reply tag, ReplyTag} |

{reply, Reply} |
OtherOption

ReplyTag = term()
Reply = yes | no | error_only | success only
OtherOption = term()
ReqIld = reference()
Asynchronously send a spawn request. Returns arequest identifier Reql d.

If the spawn operation succeeds, a new process is created on the node identified by Node. When a spawn operation
succeeds, the caller will by default be sent amessage on the form { Repl yTag, Reqld, ok, Pid} wherePid
is the process identifier of the newly created process. Such a message is referred to as a success message below in
the text. Repl yTag is by default the atom spawn_r epl y unless modified by the{repl y_tag, ReplyTag}
option. The new processiis started by the application of Modul e: Functi on to Ar gs.

The spawn operation fails either if creation of a new process faled or if the spawn operation was interrupted
by a connection failure. When a spawn operation fails, the caller will by default be sent a message on the form
{Repl yTag, Reqld, error, Reason} where Reason isthe error reason. Such a message is referred to as
an error message below in the text. Currently the following spawn error Reasons are defined, but other reasons can
appear at any time without prior notice:

badopt
Aninvalid Opt i on was passed as argument. Note that different runtime systems may support different options.
not sup

The node identified by Node does not support spawn operationsissued by spawn_r equest () .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 265

erlang

noconnecti on

Failure to set up a connection to the node identified by Node or the connection to that node was lost during the
spawn operation. In the case the connection was lost, a process may or may not have been created.

systemlimt

Could not create a new process due to that some system limit was reached. Typically the process table was full.
Valid Opt i ons:
noni t or

In the absence of spawn operation failures, atomically sets up a monitor to the newly created process. That is,
as if the calling process had called noni t or (process, Pi d) where Pi d is the process identifier of the
newly created process. The Reql d returned by spawn_r equest () isalso used as monitor reference asiif it
was returned from noni t or (process, Pid).

The monitor will not be activated for the calling process until the spawn operation has succeeded. The monitor
can not be demonitored before the operation has succeeded. A ' DOAN message for the corresponding monitor
is guaranteed not to be delivered before a success message that corresponds to the spawn operation. If the spawn
operation fails, no' DOAN message will be delivered.

If the connection between the nodesinvolved in the spawn operation islost during the spawn operation, the spawn
operation will fail with an error reason of noconnect i on. A new process may or may not have been created.

{noni tor, MonitorOpts}

In the absence of spawn operation failures, atomically sets up a monitor to the newly created process. That is,
asif the calling process had called noni t or (process, Pid, MonitorQpts) wherePi d isthe process
identifier of the newly created process. See the noni t or option above for more information.

Note that the monitor will not be activated for the calling process until the spawn operation has succeeded. For
example, in the case that an aliasis created using the monitor option, the aiaswill not be active until the monitor
is activated.

[ink

In absence of spawn operation failures, atomically setsup alink between the calling process and the newly created
process. That is, asif thecalling processhad called | i nk(Pi d) wherePi d isthe processidentifier of the newly
created process.

The link will not be activated for the calling process until the spawn operation has succeeded. The link can not
be removed before the operation has succeeded. An exit signal due to the link is guaranteed not to be delivered
before a success message that corresponds to the spawn operation. If the spawn operation fails, no exit signal due
to thelink will be delivered to the caller of spawn_r equest () .

If the connection between the nodesinvolved in the spawn operation islost during the spawn operation, the spawn
operation will fail with an error reason of noconnect i on. A new process may or may not have been created.
If it has been created, it will be delivered an exit signal with an exit reason of noconnect i on.

{reply, Reply}
Valid Repl y values:
yes

A spawn reply message will be sent to the caller regardless of whether the operation succeeds or not. If the
call to spawn_r equest () returnswithout raising an exception and ther epl y optionissettoyes, the
caller is guaranteed to be delivered either a success message or an error message. Ther epl y optionis by
default settoyes.

266 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

no

No spawn reply message will be sent to the caller when the spawn operation completes. This regardless of
whether the operation succeeds or not.

error_only

No spawn reply message will be sent to the caller if the spawn operation succeeds, but an error message
will be sent to the caller if the operation fails.

success_only

No spawn reply message will be sent to the caller if the spawn operation fails, but a success message will
be sent to the caller if the operation succeeds.
{reply_tag, ReplyTag}
Setsthereply tag to Repl yTag inthe reply message. That is, in the success or error message that is sent to the
caller due to the spawn operation. The default reply tag isthe atom spawn_r epl y.
O her Option

Other valid options depends on what options are supported by the nodeidentified by Node. A description of other
valid Opt i onsfor thelocal node of current OTP version can be found in the documentation of spawn_opt / 4.

This function will fail with abadar g exception if:

* Node isnot an atom.

e Modul e isnot an atom.

e Functi on isnot an atom.

e Args isnotaproper list of terms.

e Options isnotaproper list of terms.

Notethat not all individual Opt i onsare checked when the spawn request is sent. Some Opt i onscan only be checked
on reception of the request. Therefore an invalid option does not cause abadar g exception, but will cause the spawn
operation to fail with an error reason of badopt .

A spawn request can be abandoned by calling spawn_r equest _abandon/ 1.

spawn_request abandon(ReqId :: reference()) -> boolean()

Abandon a previously issued spawn request. Reql d corresponds to a request identifier previously returned by
spawn_r equest () inacall from current process. That is, only the process that has made the request can abandon
the request.

A spawn request can only be successfully abandoned until the spawn request has completed. When a spawn request
has been successfully abandoned, the caller will not be effected by future direct effects of the spawn request itself.
For example, it will not receive a spawn reply message. The request is however not withdrawn, so a new process
may or may not be created due to the request. If anew process is created after the spawn request was abandoned, no
monitors nor links will be set up to the caller of spawn_r equest _abandon/ 1 due to the spawn request. If the
spawn request included the | i nk option, the process created due to this request will be sent an exit signal from its
parent with the exit reason abandoned when it is detected that the spawn operation has succeeded.

A process created due to a spawn request that has been abandoned may communicate with its parent as any other
process. It isonly the direct effects on the parent of the actual spawn request, that will be canceled by abandoning
aspawn request.

Return values:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 267

erlang

true
The spawn request was successfully abandoned.
fal se

No spawn request was abandoned. The Reql d request identifier did not correspond to an outstanding spawn
reguest issued by the calling process. The reason for thisis either:

* Reql d corresponds to a spawn request previoulsy made by the calling process. The spawn operation has
completed and a spawn reply has already been delivered to the calling process unless the spawn reply was
disabled in the request.

¢ Reql d does not correspond to a spawn request that has been made by the calling process.
Thisfunction fail with abadar g exception if Reql d is not areference.

split binary(Bin, Pos) -> {binary(), binary()}

Types.
Bin = binary()
Pos = integer() >= 0

0..byte _size(Bin)

Returns a tuple containing the binaries that are the result of splitting Bi n into two parts at position Pos. Thisisnot a
destructive operation. After the operation, there are three binaries altogether. Example:

> B = list to binary("0123456789").
<<"0123456789">>

> byte size(B).

10

> {B1, B2} = split binary(B,3).
{<<"012">>,<<"3456789">>}

> byte size(Bl).

3

> byte size(B2).
7

erlang:start timer(Time, Dest, Msg) -> TimerRef

Types:
Time = integer() >= 0
Dest = pid() | atom()

Msg = term()
TimerRef = reference()

Startsatimer. Thesameascallinger | ang: start _tiner(Tinme, Dest, Mg, []).

erlang:start timer(Time, Dest, Msg, Options) -> TimerRef
Types:

268 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Time = integer()
Dest = pid() | atom()
Msg = term()
Options = [Option]
Abs = boolean()
Option = {abs, Abs}
TimerRef = reference()
Startsatimer. When thetimer expires, themessage{t i neout, Ti ner Ref, Msg} issenttotheprocessidentified
by Dest .
Options:
{abs, false}

This is the default. It means the Ti e value is interpreted as a time in milliseconds relative current Erlang
monotonic time.

{abs, true}

Absolute Ti e value. The Ti ne value isinterpreted as an absolute Erlang monotonic time in milliseconds.
More Opt i ons can be added in the future.
The absolute point in time, the timer is st to expire on, must be in the interval
[erlang:convert_time_unit(erlang:system info(start _ti nme), native, mllisecond),
erlang:convert_time_unit(erlang:system info(end_tinme), native, millisecond)].Ifardativetimeis
specified, the Ti me value is not allowed to be negative.

If Dest isapid(),it must beapi d() of aprocess created on the current runtime system instance. This process
has either terminated or not. If Dest isanat on() , it isinterpreted as the name of alocally registered process. The
process referred to by the name is looked up at the time of timer expiration. No error is returned if the name does
not refer to a process.

If Dest isapi d(), thetimer is automatically canceled if the process referred to by the pi d() isnot alive, or if
the process exits. Thisfeature wasintroduced in ERTS 5.4.11. Notice that timers are not automatically canceled when
Dest isanat on() .

Seeasoerl ang: send_after/4,erl ang: cancel _tiner/2,anderl ang: read_ti mer/ 2.

Failure: badar g if the arguments do not satisfy the requirements specified here.

statistics(Item :: active tasks) -> [ActiveTasks]
Types:
ActiveTasks = integer() >= 0
Returnsthesameasst ati sti cs(acti ve_tasks_al |) withthe exception that no information about the dirty

1O run queue and its associated schedulersis part of the result. That is, only tasks that are expected to be CPU bound
are part of the result.

statistics(Item :: active tasks all) -> [ActiveTasks]
Types:
ActiveTasks = integer() >= 0
Returns a list where each element represents the amount of active processes and ports on each run queue and its
associated schedulers. That is, the number of processes and portsthat are ready to run, or are currently running. Values

for normal run queues and their associated schedulersarelocated first in theresulting list. Thefirst element corresponds
to scheduler number 1 and so on. If support for dirty schedulers exist, an element with the value for the dirty CPU

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 269

erlang

run gueue and its associated dirty CPU schedulers follow and then as last element the value for the the dirty 10 run
gueue and its associated dirty 10 schedulers follow. The information is not gathered atomically. That is, the result is
not necessarily a consistent snapshot of the state, but instead quite efficiently gathered.

Each normal scheduler has one run queue that it manages. If dirty schedulers schedulers are supported, all dirty
CPU schedulers share one run queue, and al dirty 10 schedulers share one run queue. That is, we have multiple
normal run queues, one dirty CPU run queue and one dirty 10 run queue. Work can not migrate between the
different types of run queues. Only work in normal run queues can migrate to other normal run queues. This has
to be taken into account when evaluating the resuilt.

See also statistics(total active_tasks), statistics(run_queue_l engths),
statistics(run_queue_lengths all), statistics(total _run_queue_| engths), and
statistics(total _run_queue_lengths all).

statistics(Item :: context switches) -> {ContextSwitches, 0}
Types.

ContextSwitches = integer() >= 0
Returns the total number of context switches since the system started.

statistics(Item :: exact reductions) ->
{Total Exact Reductions,
Exact Reductions Since Last Call}

Types:
Total Exact Reductions = Exact Reductions Since Last Call = integer() >= 0

Returns the number of exact reductions.

statistics(exact_reducti ons) isamore expensive operation than statistics(reductions). |

statistics(Item :: garbage collection) ->
{Number of GCs, Words Reclaimed, 0}

Types:
Number of GCs = Words Reclaimed = integer() >= 0

Returns information about garbage collection, for example:

> statistics(garbage collection).
{85,23961,0}

Thisinformation can be invalid for some implementations.

statistics(Item :: io) -> {{input, Input}, {output, Output}}
Types.

270 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Input = Qutput = integer() >= 0

Returns | nput , which is the total number of bytes received through ports, and Qut put , which is the total number
of bytes output to ports.

statistics(Item :: microstate accounting) ->
[MSAcc Thread] | undefined
Types:
MSAcc Thread =
#{type := MSAcc Thread Type,
id := MSAcc Thread Id,
counters := MSAcc Counters}

MSAcc _Thread Type =
async | aux | dirty io scheduler | dirty cpu scheduler |
poll | scheduler

MSAcc Thread Id = integer() >= 0
MSAcc Counters = #{MSAcc Thread State => integer() >= 0}

MSAcc Thread State =
alloc | aux | bif | busy wait | check io | emulator | ets |
gc | gc fullsweep | nif | other | port | send | sleep | timers

Microstate accounting can be used to measure how much time the Erlang runtime system spends doing various tasks.
Itisdesigned to be as lightweight as possible, but some overhead exists when thisis enabled. Microstate accounting is
meant to be a profiling tool to help finding performance bottlenecks. Tost ar t /st op/r eset microstate accounting,
use system flag mi cr ost at e_account i ng.

statistics(ncrostate_accounting) returnsalist of maps representing some of the OS threads within
ERTS. Each map containst ype and i d fields that can be used to identify what thread it is, and also a counters field
that contains data about how much time has been spent in the various states.

Example:

> erlang:statistics(microstate accounting).
[#{counters => #{aux => 1899182914,
check io => 2605863602,
emulator => 45731880463,
gc => 1512206910,
other => 5421338456,
port => 221631,
sleep => 5150294100},
id == 1,
type => scheduler}|...]

The time unit is the same as returned by os: perf _count er/ 0. So, to convert it to milliseconds, you can do
something like this:

lists:map(
fun(#{ counters := Cnt } = M) ->
MsCnt = maps:map(fun(_ K, PerfCount) ->
erlang:convert time unit(PerfCount, perf counter, 1000)
end, Cnt),
M#{ counters := MsCnt }
end, erlang:statistics(microstate accounting)).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 271

erlang

Notice that these values are not guaranteed to be the exact time spent in each state. This is because of various
optimisation done to keep the overhead as small as possible.

MBAcc_Thread_Types:

schedul er
The main execution threads that do most of the work. See erl +Sfor more details.
dirty_cpu_schedul er
The threads for long running cpu intensive work. See erl +SDcpu for more details.
dirty_io_schedul er
The threads for long running 1/0O work. See erl +SDio for more details.
async
Async threads are used by various linked-in drivers (mainly the file drivers) do offload non-CPU intensive
work. See erl +A for more details.
aux
Takes care of any work that is not specifically assigned to a scheduler.
pol |
Doesthe 10 polling for the emulator. See erl +10t for more details.

The following MSAcc_Thr ead_St at esare available. All states are exclusive, meaning that a thread cannot bein
two states at once. So, if you add the numbers of all countersin athread, you get the total runtime for that thread.

aux
Time spent handling auxiliary jobs.
check_io
Time spent checking for new 1/0O events.
emul at or
Time spent executing Erlang processes.
gc
Time spent doing garbage collection. When extra states are enabled this is the time spent doing non-fullsweep
garbage collections.
ot her
Time spent doing unaccounted things.
port
Time spent executing ports.
sl eep
Time spent sleeping.

More fine-grained MSAcc_Thr ead_ St at escan be added through configure (such as. / configure --with-
nm cr ost at e- account i ng=ext r a). Enabling these states causes performance degradation when microstate
accounting is turned off and increases the overhead when it is turned on.

al l oc
Time spent managing memory. Without extra states thistime is spread out over all other states.

bi f
Time spent in BIFs. Without extra states thistimeis part of theenul at or state.

busy_ wai t
Time spent busy waiting. Thisis also the state where a scheduler no longer reports that it is active when using
statistics(schedul er_wall _tine).So,ifyouaddal other states but this and sleep, and then
divide that by all time in the thread, you should get something very similar totheschedul er _wal | _ti me
fraction. Without extra states thistime is part of the ot her state.

ets
Time spent executing ETS BIFs. Without extra states thistime is part of theenrul at or state.

gc_full
Time spent doing fullsweep garbage collection. Without extra states thistimeis part of thegc state.

272 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

ni f

Time spent in NIFs. Without extra states thistime is part of the errul at or state.
send

Time spent sending messages (processes only). Without extra states thistimeis part of theenul at or state.
tinmers

Time spent managing timers. Without extra states this time is part of the ot her state.

The utility module msacc(3) can be used to more easily analyse these statistics.
Returnsundef i ned if system flagm cr ost at e_account i ng isturned off.
Thelist of thread information is unsorted and can appear in different order between calls.

The threads and states are subject to change without any prior notice.

statistics(Item :: reductions) ->
{Total Reductions, Reductions Since Last Call}

Types:
Total Reductions = Reductions Since Last Call = integer() >= 0

Returns information about reductions, for example:

> statistics(reductions).
{2046,11}

Asfrom ERTS 5.5 (Erlang/OTP R11B), this value does not include reductions performed in current time slices of
currently scheduled processes. If an exact valueiswanted, usest ati sti cs(exact _reducti ons).

statistics(Item :: run_queue) -> integer() >= 0

Returns the total length of al normal and dirty CPU run queues. That is, queued work that is expected to be CPU
bound. Theinformation is gathered atomically. That is, theresult isaconsistent snapshot of the state, but this operation
is much more expensive compared to st ati stics(total _run_queue_l engt hs), especially when a large
amount of schedulersis used.

statistics(Item :: run _queue lengths) -> [RunQueuelLength]
Types:
RunQueuelLength = integer() >= 0
Returnsthe sameasstati sti cs(run_queue_| engt hs_al |) with the exception that no information about

the dirty 10 run queue is part of the result. That is, only run queues with work that is expected to be CPU bound is
part of the result.

statistics(Item :: run_queue lengths all) -> [RunQueuelLength]
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 273

erlang

RunQueuelLength = integer() >= 0

Returnsalist where each element represents the amount of processes and ports ready to run for each run queue. Vaues
for normal run queues are located first in the resulting list. The first element corresponds to the normal run queue of
scheduler number 1 and so on. If support for dirty schedulers exist, values for the dirty CPU run queue and the dirty
1O run queue follow (in that order) at the end. The information is not gathered atomically. That is, the result is not
necessarily a consistent snapshot of the state, but instead quite efficiently gathered.

Each normal scheduler has one run queue that it manages. If dirty schedulers schedulers are supported, all dirty
CPU schedulers share one run queue, and al dirty 10 schedulers share one run queue. That is, we have multiple
normal run queues, one dirty CPU run queue and one dirty 10 run queue. Work can not migrate between the
different types of run queues. Only work in normal run queues can migrate to other normal run queues. This has
to be taken into account when evaluating the resuilt.

See also statistics(run_queue |engths), statistics(total run_queue_ |lengths all),
statistics(total run_queue_I| engths), statistics(active_tasks),
statistics(active_tasks all), and statistics(total active_tasks),
statistics(total active tasks_all).

statistics(Item :: runtime) ->
{Total Run_Time, Time Since Last Call}
Types:
Total Run_Time = Time Since Last Call = integer() >= 0
Returns information about runtime, in milliseconds.

Thisis the sum of the runtime for all threads in the Erlang runtime system and can therefore be greater than the wall
clock time.

This value might wrap due to limitations in the underlying functionality provided by the operating system that is
used.

Example:

> statistics(runtime).
{1690,1620}

statistics(Item :: scheduler wall time) ->
[{SchedulerId, ActiveTime, TotalTime}] | undefined

Types:

SchedulerId = integer() >=1

ActiveTime = TotalTime = integer() >= 0
Returns information describing how much time normal and dirty CPU schedulers in the system have been busy. This
valueisnormally abetter indicator of how much load an Erlang node is under instead of looking at the CPU utilization
privided by tools such ast op or sysst at . Thisis because schedul er _wal | _ti nme aso includes time where

the scheduler iswaiting for some other reasource (such as an internal mutex) to be available but does not use the CPU.
In order to better understand what a scheduler is busy doing you can use microstate accounting.

274 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

The definition of a busy scheduler iswhen it is not idle and not busy waiting for new work, that is:

» Executing process code

» Executing linked-in driver or NIF code

« Executing BIFs, or any other runtime handling
* Garbage collecting

e Handling any other memory management

Notice that a scheduler can also be busy even if the OS has scheduled out the scheduler thread.

It is recommended to use the module schedul er instead of this function directly as it provides an easier way
to get the information that you usually want.

If enabled this function returns a list of tuples with { Schedul er1d, ActiveTi ne, Total Ti ne}, where
Schedul erl d is an integer ID of the scheduler, Acti veTi ne is the duration the scheduler has been busy,
and Tot al Ti ne is the total time duration since schedul er _wal | _ti me activation for the specific scheduler.
The time unit returned is undefined and can be subject to change between releases, OSs, and system restarts.
schedul er _wal | _t i neisonlytobeusedto calculaterelativevaluesfor scheduler utilization. The Act i veTi me
cannever exceed Tot al Ti me. Thelist of scheduler information isunsorted and can appear in different order between
cals.

The disabled this function returnsundef i ned.

The activation time can differ significantly between schedulers. Currently dirty schedulers are activated at system start
while normal schedulers are activated some time after theschedul er _wal | _t i ne functionality is enabled.

Only information about schedulers that are expected to handle CPU bound work is included in
the return values from this function. If you also want information about dirty /O schedulers, use
statistics(scheduler_wall _time_all) instead.

Normal schedulers will have scheduler identifiers in the range 1 =< Schedul erl d =<
erl ang: system i nf o(schedul ers) . Dirty CPU schedulers will have scheduler identifiers in the range
erl ang: system i nfo(schedul ers) < Schedulerld =< erlang: system i nfo(schedul ers)
+ erlang:systeminfo(dirty cpu_schedul ers).

The different types of schedulers handle specific types of jobs. Every job is assigned to a specific scheduler type.
Jobs can migrate between different schedulers of the same type, but never between schedulers of different types.
Thisfact has to be taken under consideration when evaluating the result returned.

You can use schedul er _wal | _ti nme to calculate scheduler utilization. First you take a sample of the values
returned by er | ang: stati stics(schedul er_wall _tine).

> erlang:system flag(scheduler wall time, true).

false

> TsO = lists:sort(erlang:statistics(scheduler wall time)), ok.
ok

Some time later the user takes another snapshot and cal culates scheduler utilization per scheduler, for example:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 275

erlang

> Tsl = lists:sort(erlang:statistics(scheduler wall time)), ok.
ok
> lists:map(fun({{I, A0, TO}, {I, Al, T1}}) ->

{I, (Al - AO)/(T1 - TO)} end, lists:zip(Ts0,Tsl)).
[{1,0.9743474730177548},

{2,0.9744843782751444},

{3,0.9995902361669045},

{4,0.9738012596572161},

{5,0.9717956667018103},

{6,0.9739235846420741},

{7,0.973237033077876},

{8,0.9741297293248656}]

Using the same snapshots to calculate atotal scheduler utilization:

> {A, T} = lists:foldl(fun({{ , AG, TO}, { , Al, T1}}, {Ai,Ti}) ->
{Ai + (Al - AO), Ti + (T1 - TO)} end, {0, 0}, lists:zip(TsO,Tsl)),
TotalSchedulerUtilization = A/T.

0.9769136803764825

Total scheduler utilization will equal 1. 0 when all schedulers have been active all the time between the two
measurements.

Another (probably more) useful value is to calculate total scheduler utilization weighted against maximum amount
of available CPU time:

> WeightedSchedulerUtilization = (TotalSchedulerUtilization
* (erlang:system info(schedulers)
+ erlang:system info(dirty cpu_schedulers)))
/ erlang:system info(logical processors available).
0.9769136803764825

Thisweighted scheduler utilization will reach 1. 0 when schedulers are active the same amount of time as maximum
available CPU time. If more schedulers exist than available logical processors, this value may be greater than 1. 0.

Asof ERTSversion 9.0, the Erlang runtime system will as default have more schedulers than logical processors. This
due to the dirty schedulers.

schedul er_wall _tine is by default disabled. To enable it, use
erl ang: system fl ag(schedul er_wall tine, true).

statistics(Item :: scheduler wall time all) ->
[{SchedulerId, ActiveTime, TotalTime}] | undefined

Types:
SchedulerId = integer() >=1
ActiveTime = TotalTime = integer() >= 0

Thesameasstati stics(schedul er_wall _tine), except that it aso include information about all dirty I/
O schedulers.

Dirty 10 schedulers will have scheduler identifiers in the range er | ang: system i nf o(schedul ers)
+ erl ang: system.info(dirty_cpu_schedul ers) < Schedul erl d =<

276 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erl ang: system.info(schedulers) + erlang:systeminfo(dirty _cpu_schedulers) +
erl ang: systeminfo(dirty_io_schedul ers).

Note that work executing on dirty 1/O schedulers are expected to mainly wait for 1/0O. That is, when you get high
scheduler utilization on dirty 1/0O schedulers, CPU utilization is not expected to be high due to thiswork.

statistics(Item :: total active tasks) -> ActiveTasks
Types:
ActiveTasks = integer() >= 0
Thesameascallingl i sts: sun(stati stics(active_tasks)), but moreefficient.

statistics(Item :: total active tasks all) -> ActiveTasks
Types:
ActiveTasks = integer() >= 0
Thesameascalingl i sts: sum(statistics(active_tasks_all)),but moreefficient.

statistics(Item :: total run queue lengths) ->
TotalRunQueuelengths

Types:
TotalRunQueuelengths = integer() >= 0
Thesameascalingl i sts: sum(statistics(run_queue_l engt hs)), but more efficient.

statistics(Item :: total run_queue lengths all) ->
TotalRunQueuelengths

Types:
TotalRunQueuelLengths = integer() >= 0
Thesameascalingl i sts: sunm(statistics(run_queue_l engths_all)), but moreefficient.

statistics(Item :: wall clock) ->
{Total Wallclock Time,
Wallclock Time Since Last Call}

Types:
Total Wallclock Time = Wallclock Time Since Last Call = integer() >= 0

Returns information about wall clock. wal | _cl ock can be used in the same manner asr unt i ne, except that real
time is measured as opposed to runtime or CPU time.

erlang:suspend process(Suspendee) -> true
Types:
Suspendee = pid()

Suspends the process identified by Suspendee. The same as calling
erl ang: suspend_process(Suspendee, []).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 277

erlang

This BIF isintended for debugging only.

erlang:suspend process(Suspendee, OptList) -> boolean()
Types:
Suspendee = pid()
OptList = [Opt]
Opt = unless suspending | asynchronous | {asynchronous, term()}

Increases the suspend count on the process identified by Suspendee and puts it in the suspended state if it is not
aready in that state. A suspended process is not scheduled for execution until the process has been resumed.

A process can be suspended by multiple processes and can be suspended multiple times by a single process. A
suspended process does not leave the suspended state until its suspend count reaches zero. The suspend count of
Suspendee is decreased when er | ang: r esune_pr ocess(Suspendee) is called by the same process that
cdleder | ang: suspend_pr ocess(Suspendee) . All increased suspend counts on other processes acquired by
aprocess are automatically decreased when the process terminates.
Options (Opt 9):
asynchronous
A suspend request is sent to the process identified by Suspendee. Suspendee eventually suspends unless
it is resumed before it could suspend. The caler of er | ang: suspend_process/ 2 returns immediately,
regardiess of whether Suspendee has suspended yet or not. The point in time when Suspendee
suspends cannot be deduced from other events in the system. It is only guaranteed that Suspendee

eventually suspends (unless it is resumed). If no asynchr onous options has been passed, the caller of
erl ang: suspend_pr ocess/ 2 isblocked until Suspendee has suspended.

{asynchronous, ReplyTag}

A suspend request is sent to the processidentified by Sus pendee. When the suspend request has been processed,
areply message is sent to the caller of this function. The reply is on the form { Repl yTag, St at e} where
St at e iseither:

exited

Suspendee has exited.
suspended

Suspendee isnow suspended.
not _suspended

Suspendee isnot suspended. This can only happen when the process that issued this request, have called
resune_process(Suspendee) before getting the reply.

Appart from the reply message, the{ asynchr onous, Repl yTag} option behaves exactly the same asthe
asynchr onous option without reply tag.

unl ess_suspendi ng

The process identified by Suspendee is suspended unless the calling process already is suspending
Suspendee. If unl ess_suspendi ng is combined with option asynchr onous, a suspend request is sent
unlessthe calling process aready is suspending Suspendee or if asuspend request already hasbeen sent andis
intransit. If the calling process already is suspending Suspendee, or if combined with optionasynchr onous

278 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

and a send request already is in transit, f al se is returned and the suspend count on Suspendee remains
unchanged.

If the suspend count on the process identified by Suspendee isincreased, t r ue isreturned, otherwisef al se.

This BIF isintended for debugging only. |

You can easily create deadlocks if processes suspends each other (directly or in circles). In ERTS versions prior
to ERTS version 10.0, the runtime system prevented such deadlocks, but this prevention has now been removed
due to performance reasons.

Failures:

badar g
If Suspendee isnot aprocessidentifier.
badar g
If the processidentified by Suspendee isthe same process as the process calling
erl ang: suspend_process/ 2.
badar g
If the processidentified by Suspendee isnot alive.
badar g
If the process identified by Suspendee resides on another node.
badar g
If Opt Li st isnot aproper list of valid Opt s.
systemlimt
If the process identified by Suspendee has been suspended more times by the calling process than can
be represented by the currently used internal data structures. The system limit is greater than 2,000,000,000
suspends and will never be lower.

erlang:system flag(Flag :: backtrace depth, Depth) -> 0OldDepth
Types:
Depth = 0ldDepth = integer() >= 0
Sets the maximum depth of call stack back-traces in the exit reason element of ' EXI T' tuples. The flag also limits
the stacktrace depth returned by pr ocess_i nf o itemcurrent _st acktrace.

Returns the old value of the flag.
erlang:system flag(Flag :: cpu topology, CpuTopology) ->

0ldCpuTopology
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 279

erlang

CpuTopology = 0ldCpuTopology = cpu_topology()
cpu_topology() = [LevelEntry :: level entry()] | undefined
level entry() =
{LevelTag :: level tag(), SubLevel :: sub level()} |
{LevelTag :: level tag()
InfoList :: info list()
()
I

SubLevel :: sub level
level tag() = core | node
sub level() =

[LevelEntry :: level entry()] |

(LogicalCpuld :: {logical, integer() >= 0})
info list() = []

}
processor | thread

War ning:

Thisargument isdeprecated. Instead of using this argument, use command-line argument +sct inerl (1) .
When this argument is removed, afinal CPU topology to use is determined at emulator boot time.

Sets the user-defined CpuTopol ogy. The user-defined CPU topology overrides any automatically detected CPU
topology. By passingundef i ned asCpuTopol ogy, thesystem revertsto the CPU topol ogy automatically detected.
The returned value equals the value returned fromer | ang: syst em i nf o(cpu_t opol ogy) before the change
was made.

Returns the old value of the flag.

The CPU topology is used when binding schedulers to logical processors. If schedulers are already bound when the
CPU topology is changed, the schedulers are sent a request to rebind according to the new CPU topology.

The user-defined CPU topology can also be set by passing command-line argument +sct toerl (1) .

For information on type CpuTopol ogy and more, see er | ang: syst em i nf o(cpu_t opol ogy) aswell as
command-lineflags+sct and +sbt inerl (1).

erlang:system flag(Flag :: dirty cpu schedulers online,
DirtyCPUSchedulersOnline) ->
0ldDirtyCPUSchedulersOnline

Types:
DirtyCPUSchedulersOnline = 0ldDirtyCPUSchedulersOnline = integer() >= 1
Sets the number of dirty CPU schedulers online. Rangeis1 <= Dirt yCPUSchedul ersOnline <= N,

where N is the smallest of the return values of erl ang: system.info(dirty_cpu_schedul ers) and
erl ang: system.i nfo(schedul ers_online).

Returns the old value of the flag.

The number of dirty CPU schedulers online can changeif the number of schedulers online changes. For example, if 12
schedulersand 6 dirty CPU schedulersareonling, andsyst em f | ag/ 2 isusedto set the number of schedulersonline
to 6, then the number of dirty CPU schedulers online is automatically decreased by half aswell, down to 3. Similarly,
the number of dirty CPU schedulers online increases proportionally to increases in the number of schedulers online.

For more information, see erl ang: system.info(dirty cpu_schedul ers) and
erlang: system.info(dirty _cpu_schedul ers_online).

erlang:system flag(Flag :: erts alloc, Value :: {Alloc, F, V}) ->

280 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

ok | notsup
Types:
Alloc = F = atom()
V = integer()
Sets system flagsfor ert s_al | oc(3) . Al | oc isthe alocator to affect, for example bi nary_al | oc. F isthe
flag to change and V is the new value.
Only asubset of all ert's_al | oc flags can be changed at run time. This subset is currently only the flag sbct .

Returns ok if the flag was set or not sup if not supported by erts_al | oc.

erlang:system flag(Flag :: fullsweep after, Number) -> OldNumber
Types:
Number = OldNumber = integer() >= 0
Sets system flag f ul | sweep_af t er. Nunber isanon-negative integer indicating how many times generational

garbage collections can be done without forcing a fullsweep collection. The value applies to new processes, while
processes already running are not affected.

Returns the old value of the flag.
In low-memory systems (especially without virtual memory), setting the value to O can help to conserve memory.
This value can also be set through (OS) environment variable ERL_ FULLSWEEP AFTER.

erlang:system flag(Flag :: microstate accounting, Action) ->
OldState

Types:
Action = true | false | reset
OldState = true | false
Turns on/off microstate accounting measurements. When passing reset, all counters are reset to 0.

For moreinformation seest ati sti cs(mni crostat e_accounti ng).

erlang:system flag(Flag :: min heap size, MinHeapSize) ->
0ldMinHeapSize
Types:
MinHeapSize = 0ldMinHeapSize = integer() >= 0
Sets the default minimum heap size for processes. The sizeis specified inwords. Thenew m n_heap_si ze effects

only processes spawned after the change of m n_heap_si ze has been made. m n_heap_si ze can be set for
individual processes by using spawn_opt/ 4 or pr ocess_fl ag/ 2.

Returns the old value of the flag.

erlang:system flag(Flag :: min bin vheap size, MinBinVHeapSize) ->
0ldMinBinVHeapSize
Types:
MinBinVHeapSize = 0ldMinBinVHeapSize = integer() >= 0

Sets the default minimum binary virtual heap size for processes. The size is specified in words. The new
m n_bi n_vhheap_si ze effects only processes spawned after the change of m n_bi n_vheap_si ze has

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 281

erlang

been made. m n_bi n_vheap_si ze can be set for individua processes by using spawn_opt/ 2, 3,4 or
process_fl ag/ 2.

Returns the old value of the flag.

erlang:system flag(Flag :: max heap size, MaxHeapSize) ->
0OldMaxHeapSize
Types:
MaxHeapSize = OldMaxHeapSize = max heap size()
max_heap size() =
integer() >= 0 |
#{size => integer() >= 0,
kill => boolean(),
error _logger => boolean()}

Setsthe default maximum heap size settings for processes. The sizeis specified inwords. Thenew nax_heap_si ze
effects only processes spawned efter the change has been made. max_heap_si ze canbe set for individual processes
usingspawn_opt/ 2, 3, 4 orprocess_fl ag/ 2.

Returns the old value of the flag.

erlang:system flag(Flag :: multi scheduling, BlockState) ->
OldBlockState

Types:
BlockState = block | unblock | block normal | unblock normal
OldBlockState = blocked | disabled | enabled

If multi-scheduling isenabled, more than one schedul er thread isused by theemul ator. M ulti-scheduling can be blocked
in two different ways. Either all schedulers but one is blocked, or al normal schedulers but one is blocked. When
only normal schedulers are blocked, dirty schedulers are free to continue to schedule processes.

If Bl ockSt at e =: = bl ock, multi-scheduling isblocked. That is, one and only one scheduler thread will execute.
If Bl ockSt at e =: = unbl ock and no one else blocks multi-scheduling, and this process has blocked only once,
multi-scheduling is unblocked.

If Bl ockState =:= bl ock_nor mal , norma multi-scheduling is blocked. That is, only one normal scheduler
thread will execute, but multiple dirty schedulerscan execute. If Bl ockSt at e =: = unbl ock_nor nal andnoone
else blocks normal multi-scheduling, and this process has blocked only once, normal multi-scheduling is unblocked.

One process can block multi-scheduling and normal multi-scheduling multiple times. If aprocess has blocked multiple
times, it must unblock exactly as many times as it has blocked before it has released its multi-scheduling block. If a
process that has blocked multi-scheduling or normal multi-scheduling exits, it automatically releases its blocking of
multi-scheduling and normal multi-scheduling.

Thereturn values are di sabl ed, bl ocked, bl ocked_nor nmal , or enabl ed. The returned value describes the
state just after thecall toer | ang: system fl ag(mul ti _schedul i ng, Bl ockSt at e) hasbeen made. For
information about the return values, seeer | ang: system i nfo(nul ti _schedul i ng).

Blocking of multi-scheduling and normal multi-scheduling is normally not needed. If you fedl that you need to use
these features, consider it afew more times again. Blocking multi-scheduling is only to be used as alast resort, as
itismost likely avery inefficient way to solve the problem.

282 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

See also erl ang: system i nfo(mnul ti_scheduling),
erl ang: system.info(normal _multi_schedul i ng_bl ockers),
erl ang: system.info(multi_schedul i ng_bl ockers), and

erl ang: system i nf o(schedul ers).

erlang:system flag(Flag :: outstanding system requests limit,
NewLimit) ->
OldLimit
Types:

NewLimit = OldLimit = 1..134217727

Sets a limit on the amount of outstanding requests made by a system process orchestrating system wide changes.
Currently there are two such processes:

The Code Purger
The code purger orchestrates checking of references to old code before old code is removed from the system.
The Literal Area Collector

The literal area collector orchestrates copying of references from old literal areas before remova of such areas
from the system.

Each of these processes are allowed to have as many outstanding requests as this limit is set to. By
default this limit is set to twice the amount of schedulers on the system. This will ensure that schedulers
will have enough work scheduled to perform these operations as quickly as possible at the same time
as other work will be interleaved with this work. Currently used limit can be checked by calling
erl ang: system i nf o(out st andi ng_system requests_limt).

Thislimit can also be set by passing the command lineargument +zosrl <Lim t>toerl.

erlang:system flag(Flag :: scheduler bind type, How) ->
0ldBindType
Types:
How = scheduler bind type() | default bind
0ldBindType = scheduler bind type()

scheduler _bind type() =
no _node processor spread | no node thread spread | no spread |
processor spread | spread | thread spread |
thread no node processor spread | unbound

This argument is deprecated. Instead of using this argument, use command-line argument +sbt inerl (1).
When this argument is removed, afinal scheduler bind type to use is determined at emulator boot time.

Controlsif and how schedulers are bound to logical processors.

When er | ang: syst em fl ag(schedul er _bi nd_t ype, How) iscalled, an asynchronous signa is sent to
all schedulers online, causing them to try to bind or unbind as requested.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 283

erlang

If ascheduler failsto bind, thisis often silently ignored, asit isnot always possible to verify valid logical processor
identifiers. If an error is reported, an error event islogged. To verify that the schedulers have bound as requested,
cal erl ang: syst em i nf o(schedul er _bi ndi ngs).

Schedulers can be bound on newer Linux, Solaris, FreeBSD, and Windows systems, but more systems will be
supported in future releases.

In order for the runtime system to be able to bind schedul ers, the CPU topology must be known. If the runtime system
fails to detect the CPU topology automatically, it can be defined. For more information on how to define the CPU
topology, see command-lineflag +sct inerl (1).

The runtime system does by default not bind schedulersto logical processors.

If the Erlang runtime system is the only OS process binding threads to logical processors, this improves the
performance of the runtime system. However, if other OS processes (for example, another Erlang runtime system)
also bind threads to logical processors, there can be a performance penalty instead. Sometimes this performance
penalty can be severe. If so, it is recommended to not bind the schedulers.

Schedulers can be bound in different ways. Argument How determines how schedulers are bound and can be any of
the following:

unbound

Same as command-line argument +sbt uiner| (1).
no_spread

Same as command-line argument +sbt nsinerl (1).
t hr ead_spread

Same as command-line argument +sbt tsinerl (1).
processor _spread

Same as command-line argument +sbt psinerl (1).
spread

Same as command-line argument +sbt s inerl (1).
no_node_t hread_spr ead

Same as command-line argument +sbt nntsinerl (1).
no_node_processor _spread

Same as command-line argument +sbt nnpsinerl (1).
t hread_no_node_processor_spread

Same as command-line argument +sbt t nnpsinerl (1).
defaul t _bind

Same as command-line argument +sbt dbinerl (1).

The returned value equals How before flag schedul er _bi nd_t ype was changed.
Failures:

not sup

If binding of schedulersis not supported.
badar g

If Howis not one of the documented alternatives.
badar g

If CPU topology information is unavailable.

The scheduler bind type can also be set by passing command-line argument +sbt toer | (1) .

284 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

For more information, see erl ang: system i nf o(schedul er _bi nd_t ype),
erl ang: syst em i nf o(schedul er _bi ndi ngs) ,aswell ascommand-lineflags+sbt and+sct iner| (1).

erlang:system flag(Flag :: scheduler wall time, Boolean) ->
0ldBoolean

Types:
Boolean = 0ldBoolean = boolean()

Try enable or disable scheduler wall time measurements by passing Bool ean aseithertrue or f al se.

For more information about how to use scheduler wal time measurements, see
statistics(scheduler_wall _tine).

Scheduler wall time measurements has a node global state. It is either enabled for all processes on the node or
disabled for all processes. Each process has alogical counter initialized as zero. A call with Bool ean ast r ue will
increase that counter one step for the calling process. A call with f al se will decrease it one step unless it already
is zero. The node global state for schedul er _wal | _ti me will be enabled aslong asthereis at least one process
alive with a counter value larger than zero. When a process terminates, its counter will also disappear. To ensure
schedul er _wal | _ti ne iskept enabled, the process that enabled it must therefore be kept alive.

Returns the old value of the node globa state, t r ue if scheduler wall time measurements were enabled, f al se if
it were disabled.

Scheduler wall time measurements do consume some cpu overhead and should not be left turned on unless used.

erlang:system flag(Flag :: schedulers online, SchedulersOnline) ->
0ldSchedulersOnline

Types:
SchedulersOnline = 0ldSchedulersOnline = integer() >=1

Sets the number of schedulers online. Range is 1 <= Schedul ersOnl i ne <=
erl ang: system.i nfo(schedul ers).

Returnsthe old value of the flag.

If the emulator was built with support for dirty schedulers, changing the number of schedulers online can also change
the number of dirty CPU schedulers online. For example, if 12 schedulers and 6 dirty CPU schedulers are online, and
system fl ag/ 2 isusedto set the number of schedulers onlineto 6, then the number of dirty CPU schedulersonline
isautomatically decreased by half aswell, down to 3. Similarly, the number of dirty CPU schedulers online increases
proportionally to increases in the number of schedulers online.

For more information, see erl ang: system i nf o(schedul ers) and
erl ang: system i nfo(schedul ers_online).

erlang:system flag(Flag :: system logger, Logger) -> PrevLogger
Types:
Logger = PrevLogger = logger | undefined | pid()

Setsthe processthat will receive thelogging messagesgenerated by ERTS. If settoundef i ned, all logging messages
generated by ERTS will be dropped. The messages will be in the format:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 285

erlang

{log,Level,Format,ArgList,Metadata} where

Level = atom(),
Format = string(),
ArgList = list(term()),
Metadata = #{ pid => pid(),
group leader => pid(),
time := logger:timestamp(),
error_logger := #{ emulator := true, tag := atom() }

If thesyst em | ogger processdies, thisflag will beresettol ogger .
The default is the process named | ogger .
Returns the old value of the flag.

This function is designed to be used by the KERNEL | ogger . Be careful if you change it to something else as
log messages may be lost. If you want to intercept emulator log messages, do it by adding a specialized handler
to the KERNEL logger.

erlang:system flag(Flag :: trace control word, TCW) -> OldTCW
Types:
TCW = 01dTCW = integer() >= 0
Sets the value of the node trace control word to TCW which is to be an unsigned integer. For more information, see
functionset _t cwin section "Match Specificationsin Erlang" in the User's Guide.

Returns the old value of the flag.

erlang:system flag(Flag :: time offset, Value :: finalize) ->
OldState
Types:
OldState = preliminary | final | volatile

Finalizes the time offset when single time warp mode is used. If another time warp mode is used, the time offset state
isleft unchanged.

Returns the old state identifier, that is:

o Ifprelim nary isreturned, finaization was performed and the time offset is now final.

e If final is returned, the time offset was aready in the final state. This either because another
erl ang: system flag(tinme_offset, finalize) cal or because notimewarp modeis used.

« Ifvol ati | e isreturned, the time offset cannot be finalized because multi-time warp mode is used.

erlang:system info(Item :: update cpu info) -> changed | unchanged

Returnsinformation about the current system. The documentation of thisfunction isbroken into the following sections
in order to make it easier to navigate.

Menmory Al l ocation

all ocated _areas,allocator,alloc_util _allocators,all ocator_sizes
CPU Topol ogy

cpu_t opol ogy, | ogi cal _processors,update_cpu_info

286 | Ericsson AB. All Rights Reserved.: Erlang Run-Ti