ERLANG

wxErlang

Copyright © 2009-2024 Ericsson AB. All Rights Reserved.
wxErlang 2.2.2.1
May 2, 2024

Copyright © 2009-2024 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

May 2, 2024

1.1 wx the erlang binding of wxWidgets

1 wxErlang User's Guide

The wxErlang applicationis an api for writing graphical user interfaces with wxWidgets.

1.1 wx the erlang binding of wxWidgets

The wx application is an erlang binding of wxWidgets. This document describes the erlang mapping to wxWidgets
and it's implementation. It is not a complete users guide to wxWidgets. If you need that, you will have to read the
wxWidgets documentation instead. wx tries to keep a one-to-one mapping with the original APl so that the original
documentation and examples shall be as easy as possible to use.

wxErlang examples and test suite can be found in the erlang src release. They can also provide some help on how
to usethe API.

Thisiscurrently avery brief introduction to wx. The application is still under development, which means the interface
may change, and the test suite currently have a poor coverage ratio.

1.1.1 Contents

e Introduction

* Multiple processes and memory handling
e Event Handling

e Acknowledgments

1.1.2 Introduction

The original wxWidgets is an object-oriented (C++) APl and that is reflected in the erlang mapping. In most cases
each classin wxWidgets is represented as a module in erlang. This gives the wx application a huge interface, spread
over several modules, and it al starts with the wx module. The wx module contains functions to create and destroy
the GUI, i.e. wx: new 0, wx: dest r oy/ 0, and some other useful functions.

Objects or object references in wx should be seen as erlang processes rather than erlang terms. When you operate on
them they can change state, e.g. they are not functional objects as erlang terms are. Each object has a type or rather
aclass, which is manipulated with the corresponding module or by sub-classes of that object. Type checking is done
so that a module only operates on it's objects or inherited classes.

An object is created with new and destroyed with destroy. Most functions in the classes are named the same as their
C++ counterpart, except that for convenience, in erlang they start with alowercase letter and the first argument isthe
object reference. Optional arguments are last and expressed as tagged tuplesin any order.

For example the wxWindow C++ class is implemented in the wxWindow erlang module and the member
wxWindow:: Center OnPar ent is thus wxWindow: center OnPar ent. The following C++ code:

wxWindow MyWin = new wxWindow();
MyWin.CenterOnParent (wxVERTICAL);
delete MyWin;

would in erlang look like:

Ericsson AB. All Rights Reserved.: wxErlang | 1

1.1 wx the erlang binding of wxWidgets

MyWin = wxWindow:new(),
wxWindow: centerOnParent (MyWin, [{dir, ?wxVERTICAL}]),

wxWindow:destroy(MyWin),

When you are reading wxWidgets documentation or the examples, you will notice that some of the most basic classes
are missing in wx, they are directly mapped to corresponding erlang terms:

wxPoint is represented by { Xcoord,Y coord}

wxSizeis represented by { Width,Height}

wxRect is represented by { Xcoord,Y coord,Width,Height}
wxColour isrepresented by { Red,Green,Blue[,Alpha]}
wxPoint is represented by { Xcoord,Y coord}

wxString is represented by unicode:charlist()
wxGBPaosition is represented by { Row,Column}
wxGBSpan is represented by { RowSpan,ColumnSPan}
wxGridCellCoordsis represented by { Row,Column}

In the places where the erlang API differs from the original one it should be obvious from the erlang documentation
which representation has been used. E.g. the C++ arrays and/or lists are sometimes represented as erlang lists and
sometimes as tuples.

Colours are represented with { Red,Green,Blue[,Alpha]}, the Alpha value is optional when used as an argument to
functions, but it will always be returned from wx functions.

Defines, enumerations and global variables existsinwx. hr | as defines. Most of these defines are constants but not
all. Some are platform dependent and therefore the global variables must beinstantiated during runtime. These will be
acquired from the driver with a call, so not all defines can be used in matching statements. Class local enumerations
will be prefixed with the class name and a underscore asin Cl assNanme_Enum

Additionally some global functions, i.e. non-class functions, exist in thewx_m sc module.

wxErlang isimplemented as a (threaded) driver and arather direct interface to the C++ API, with the drawback that
if the erlang programmer does an error, it might crash the emulator.

Since the driver is threaded it requires a smp enabled emulator, that provides athread safe interface to the driver.

1.1.3 Multiple processes and memory handling

Theintention isthat each erlang application callswx:new() once to setup it's GUI which creates an environment and a
memory mapping. To be able to use wx from several processes in your application, you must share the environment.
You can get the active environment with wx: get _env/ 0 and set it in the new processes with wx: set _env/ 1.
Two processes or applications which have both called wx:new() will not be able use each others objects.

wx:new(),
MyWin = wxFrame:new(wx:null(), 42, "Example", [1),
Env = wx:get env(),
spawn(fun() ->
wx:set env(Env),
%% Here you can do wx calls from your helper process.

end),

When wx: dest r oy/ 0 isinvoked or when all processes in the application have died, the memory is deleted and all
windows created by that application are closed.

2 | Ericsson AB. All Rights Reserved.: wxErlang

1.1 wx the erlang binding of wxWidgets

Thewx application never cleansor garbage collects memory aslong asthe user applicationisaive. Most of the objects
are deleted when awindow is closed, or at least all the objects which have a parent argument that is non null. By using
WX CLASS: dest r oy/ 1 when possibleyou can avoid an increasing memory usage. Thisisespecially important when
wxWidgets assumes or recommends that you (or rather the C++ programmer) have allocated the object on the stack
since that will never be done in the erlang binding. For example wx DC class or its sub-classes or wxSi zer Fl ags.

Currently the dialogs show modal function freezes wxWidgets until the dialog is closed. That isintended but in erlang
where you can have several GUI applications running at the same time it causes trouble. Thiswill hopefully be fixed
in future wxWidgets releases.

1.1.4 Event Handling

Event handling in wx differs most from the original API. You must specify every event you want to handle in
wxWidgets, that is the same in the erlang binding but you can choose to receive the events as messages or handle
them with callback funs.

Otherwisethe event subscription is handled aswxWidgets dynamic event-handler connection. Y ou subscribeto events
of a certain type from objects with an 1D or within a range of 1Ds. The callback fun is optional, if not supplied the
event will be sent to the processthat called connect/2. Thus, ahandler isacallback fun or a process which will receive
an event message.

Eventsare handled in order from bottom to top, inthewidgets hierarchy, by thelast subscribed handler first. Depending
onif wxEvent : ski p() iscalled the event will be handled by the other handler(s) afterwards. Most of the events
have default event handler(s) installed.

Message events looks like #wx{id=integer(), obj=wx:wxObject(), userData=term(), event=Rec }. The id is the
identifier of the object that received the event. The obj field containsthe object that you used connect on. Theuser Data
field contains a user supplied term, thisis an option to connect. And the event field contains arecord with event type
dependent information. The first element in the event record is always the type you subscribed to. For exampleif you
subscribed to key _up eventsyou will receive the #wx{ event =Event } where Event will be awxK ey event record
where Event #wxKey. type = key_up.

In wxWidgets the developer hasto call wkEvent : ski p() if hewantsthe event to be processed by other handlers.
Y ou can do the same in wx if you use callbacks. If you want the event as messages you just don't supply a callback
and you can set the skip option in connect call to true or false, the default it is false. True means that you get the
message but let the subsequent handlers also handle the event. If you want to change this behavior dynamically you
must use callbacks and call wxEvent : ski p() .

Callback event handling is done by using the optional callback fun/2 when attaching the handler. The
fun(#wx{},wxObject() must take two arguments where the first is the same as with message events described above
and the second is an object reference to the actual event object. With the event object you can call wxEvent : ski p()
and access al the data. When using callbacks you must call wxEvent : ski p() by yourself if you want any of the
events to be forwarded to the following handlers. The actual event objects are deleted after the fun returns.

The callbacks are always invoked by another process and have exclusive usage of the GUI when invoked. This means
that a callback fun cannot use the process dictionary and should not make calls to other processes. Calls to another
processinside acallback fun may cause adeadlock if the other processiswaiting on completion of hiscall to the GUI.

1.1.5 Acknowledgments

Mats-Ola Persson wrote the initial wxWidgets binding as part of his master thesis. The current version is atota re-
write but many ideas have been reused. The reason for the re-write was mostly due to the limited requirements he
had been given by us.

Also thanks to the wxWidgets team that develops and supports it so we have something to use.

Ericsson AB. All Rights Reserved.: wxErlang | 3

1.1 wx the erlang binding of wxWidgets

2 Reference Manual

The wxErlang applicationis an api for writing graphical user interfaces with wxWidgets.

4 | Ericsson AB. All Rights Reserved.: wxErlang

WX

WX

Erlang module

A port of wxWidgets.

Thisis the base api of wxWidgets. This module contains functions for starting and stopping the wx-server, as well
as other utility functions.

wxWidgetsis object oriented, and not functional. Thus, in wxErlang amodul e represents aclass, and the object created
by this class has an own type, wxCLASS(). This module represents the base class, and all other wxMODULE's are
sub-classes of this class.

Objects of aclass are created with wxCLASS:new(...) and destroyed with wxCLASS:destroy(). Member functions are
called with wxCLASS:member(Object, ...) instead of asin C++ Object.member(...).

Sub class modules inherit (non static) functions from their parents. The inherited functions are not documented in
the sub-classes.

This erlang port of wxWidgets tries to be a one-to-one mapping with the original wxWidgets library. Some things are
different though, as the optional arguments use property listsand can be in any order. The main differenceisthe event
handling which is different from the original library. See wxEvtHandler.

The following classes are implemented directly as erlang types:
wxPoint={ x,y} ,wxSize={ w,h} wxRect={ x,y,w,h} wxColour={r,g,b [,a}, wxString=unicode:chardata(),
wxGBPosition={r,c} ,wxGBSpan={ rs,cs} ,wxGridCell Coords={r,c} .

wxWidgets uses a process specific environment, which is created by wx:new/0. To be able to use the environment from
other processes, call get_env/0toretrievethe environment and set_env/1 to assign the environment in the other process.

Global (classless) functions are located in the wx_misc module.
DATA TYPES

wx_colour() = {R::byte(), G::byte(), B::byte()} | wx_colourd()
wx_colourd() = { R::byte(), G::byte(), B::byte(), A::byte()}

wx_datetime() = {{ Y ear::integer(), Month::integer(), Day::integer()}, { Hour::integer(), Minute::integer(),
Second::integer()} }

In Local Timezone

wx_enum() = integer()

Constant defined in wx.hrl

wx_env() = #wx_env{}

Opague process environment
wx_memory() = binary() | #wx_mem{}

Opagque memory reference
wx_object() = #wx_ref{}

Opaque object reference
wx_wxHtmILinkInfo() = #wxHtmlLinkInfo{ href=unicode:chardata(), target=unicode:chardata()}

Ericsson AB. All Rights Reserved.: wxErlang | 5

href
href

WX

wx_wxMouseState() = #wxM ouseState{ x=integer(), y=integer(), leftDown=boolean(), middleDown=boolean(),
rightDown=boolean(), controlDown=boolean(), shiftDown=boolean(), altDown=boolean(), metaDown=boolean(),
cmdDown=boolean()}

See #wxMouseState{} defined in wx.hrl

Exports
parent class(X1l) -> term()

new() -> wx object()
Startsawx server.

new(Options::[Option]) -> wx object()
Types:
Option = {debug, list() | atom()} | {silent_start, boolean()}

Starts awx server. Option may be {debug, Level}, see debug/1. Or {silent_start, Bool}, which causes error messages
at startup to be suppressed. The latter can be used as a silent test of whether wx is properly installed or not.

destroy() -> ok

Stops awx server.

get env() -> wx env()

Gets this process's current wx environment. Can be sent to other processes to allow them use this process wx
environment.

See also: set_env/1.

set env(Wx _env::wx env()) -> ok
Sets the process wx environment, allows this process to use another process wx environment.

subscribe events() -> ok
Addsthe calling process to the list of of processes that are listening to wx application events.

At the moment these are all MacOSX specific events corresponding to Mac Newi | e() and friends from wxWidgets
WXApp:

e {newfile, ""}

e {open_file, Filenane}

o {print_file, Filenane}

e {open_url, Url}

e {reopen_app, ""}

The call always returns ok but will have sent any already received eventsto the calling process.

null() -> wx object()
Returns the null object

6 | Ericsson AB. All Rights Reserved.: wxErlang

href

WX

is null(Wx ref::wx object()) -> boolean()

Returnstrueif object is null, false otherwise

equal(Wx ref::wx object(), X2::wx object()) -> boolean()
Returnstrueif both arguments references the same object, fal se otherwise

getObjectType(Wx ref::wx object()) -> atom()
Returns the object type

typeCast(0ld::wx object(), NewType::atom()) -> wx object()

Casts the object to class NewType. It is needed when using functions like wxWindow:findwWindow/2, which returns
ageneric wxObject type.

batch(Fun::function()) -> term()

Batches all wx commands used in the fun. Improves performance of the command processing by grabbing the
wxWidgets thread so that no event processing will be done before the compl ete batch of commandsis invoked.

See also: foldl/3, foldr/3, foreach/2, map/2.

foreach(Fun::function(), List::list()) -> ok
Behaves like lists:foreach/2 but batches wx commands. See batch/1.

map(Fun::function(), List::list()) -> list()
Behaves like lists:map/2 but batches wx commands. See batch/1.

foldl(Fun::function(), Acc::term(), List::list()) -> term()
Behaves like lists:foldl/3 but batches wx commands. See batch/1.

foldr(Fun::function(), Acc::term(), List::list()) -> term()
Behaves like lists:foldr/3 but batches wx commands. See batch/1.

create memory(Size::integer()) -> wx memory()

Createsamemory area (of Sizein bytes) which can be used by an external library (i.e. opengl). It isup to the client to
keep areference to this object so it does not get garbage collected by erlang while still in use by the external library.

Thisisfar from erlang'sintentional usage and can crash the erlang emulator. Use it carefully.

get memory bin(Wx mem::wx memory()) -> binary()

Returns the memory area as abinary.

retain_memory(Wx_mem::wx_memory()) -> ok

Saves the memory from deletion until release_memory/1iscalled. If release_memory/1is not called the memory will
not be garbage collected.

Ericsson AB. All Rights Reserved.: wxErlang | 7

WX

release memory(Wx mem::wx memory()) -> ok

debug(Debug::Level | [Level]) -> ok
Types:
Level = none | verbose | trace | driver | integer()

Sets debug level. If debug level is'verbose' or 'trace’ each call is printed on console. If Level is'driver' each allocated
object and deletion is printed on the console.

demo() -> ok | {error, atom()}
Starts awxErlang demo if examples directory exists and is compiled

8 | Ericsson AB. All Rights Reserved.: wxErlang

wx_object

wX_object

Erlang module

wx_object - Generic wx object behaviour

Thisis abehaviour module that can be used for "sub classing” wx objects. It works like aregular gen_server module
and creates a server per object.

NOTE: Currently no form of inheritance isimplemented.
The user module should export:

init(Args) should return

{wxObject, State} | { wxObject, State, Timeout} | ignore | { stop, Reason}
Asynchronous window event handling:

handle_event(#wx{}, State) should return

{noreply, State} | { noreply, State, Timeout} |{stop, Reason, State}

The user module can export the following callback functions:

handle_call(Msg, { From, Tag}, State) should return

{reply, Reply, State} | {reply, Reply, State, Timeout} | {noreply, State} | { noreply, State, Timeout} | { stop, Reason,
Reply, State}

handle_cast(Msg, State) should return

{noreply, State} | { noreply, State, Timeout} |{stop, Reason, State}

If the above are not exported but called, the wx_object process will crash. The user module can also export:

Infois message e.g. {'EXIT', P, R}, { nodedown, N}, ...
handle_info(Info, State) should return, ...
{noreply, State} | { noreply, State, Timeout} |{stop, Reason, State}

If a message is sent to the wx_object process when handle info is not exported, the message will be dropped and
ignored.

When stop is returned in one of the functions above with Reason = normal | shutdown | Term, terminate(State) is
caled. It lets the user module clean up, it is always called when server terminates or when wx_object() in the driver
is deleted. If the Parent process terminates the Moduleiterminate/2 function is called.

terminate(Reason, State)

Example:

Ericsson AB. All Rights Reserved.: wxErlang | 9

wx_object

-module(myDialog).
-export([new/2, show/1, destroy/1]). %% API
-export([init/1, handle call/3, handle event/2,
handle info/2, code change/3, terminate/2]).
new/2, showModal/1l, destroy/1]). %% Callbacks

%% Client API
new(Parent, Msg) ->
wx_object:start(?MODULE, [Parent,Id], [1]).

show(Dialog) ->
wx_object:call(Dialog, show modal).

destroy(Dialog) ->
wx_object:call(Dialog, destroy).

%% Server Implementation ala gen server
init([Parent, Str]) ->
Dialog = wxDialog:new(Parent, 42, "Testing", []),

wxDialog:connect(Dialog, command button clicked),
{Dialog, MyState}.

handle call(show, From, State) ->
wxDialog:show(State#state.win),
{reply, ok, State};

handle event (#wx{}, State) ->

io:format("Users clicked button~n",[1),
{noreply, State};

DATA TYPES
request_id() = term()

server_ref() = wx:wx_abject() | atom() | pid()
Exports

start(Name, Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}

Types:
Name = {local, atom()}
Mod = atom()

Args = term)
Flag = trace | log | {logfile, string()} | statistics | debug
Options = [{tineout, timeout()} | {debug, [Flag]}]

Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

start _link(Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}
Types:

Mod = atom()

Args = term)

Flag = trace | log | {logfile, string()} | statistics | debug

10 | Ericsson AB. All Rights Reserved.: wxErlang

wx_object

Options = [{tineout, tinmeout()} | {debug, [Flag]}]

Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

start link(Name, Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}

Types:
Name = {local, atom()}
Mod = atom()

Args = term)
Flag = trace | log | {logfile, string()} | statistics | debug
Options = [{tineout, timeout()} | {debug, [Flag]}]

Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

stop(0bj) -> ok
Types.
bj = wx:wx_object() | atom() | pid()

Stops a generic wx_aobject server with reason 'normal’. Invokes terminate(Reason,State) in the server. The call waits
until the process is terminated. If the process does not exist, an exception is raised.

stop(0Obj, Reason, Timeout) -> ok

Types:
] = wx:wx_object() | atonm() | pid()
Reason = term()
Ti meout = timeout ()

Stops a generic wx_object server with the given Reason. Invokes terminate(Reason,State) in the server. The call waits
until the process is terminated. If the call times out, or if the process does not exist, an exception is raised.

call(0Obj, Request) -> term()

Types:
] = wx:wx_object() | atonm() | pid()
Request = term))

Make a call to awx_object server. The call waits until it gets a result. Invokes handle_call(Reguest, From, State) in
the server

call(Obj, Request, Timeout) -> term()
Types.
bj = wx:wx_object() | atom() | pid()
Request = term)
Ti meout = integer()
Make acall to awx_object server with atimeout. Invokes handle_call(Request, From, State) in server

send request(0Obj, Request::term()) -> request id()

Types:
bj = wx:wx_object() | atom() | pid()

Ericsson AB. All Rights Reserved.: wxErlang | 11

wx_object

Make an send_request to a generic server. and return a Requestld which can/should be used with wait_response/[1]
2]. Invokes handle_call(Request, From, State) in server.

wait response(RequestId::request id()) -> {reply, Reply::term()} | {error,
{term(), server ref()}}

Wait infinitely for areply from a generic server.

wait response(Key::request id(), Timeout::timeout()) -> {reply,
Reply::term()} | timeout | {error, {term(), server ref()}}

Wait 'timeout’ for areply from a generic server.

check response(Msg::term(), Key::request id()) -> {reply, Reply::term()} |
false | {error, {term(), server ref()}}

Check if areceived message was areply to a Requestid

cast(0Obj, Request) -> ok
Types:
hj = wx:wx_object() | atom() | pid()
Request = term))
Make a cast to awx_object server. Invokes handle_cast(Request, State) in the server

get pid(0bj) -> pid()
Types:

bj = wx:wx_object() | atom() | pid()
Get the pid of the object handle.

set pid(Obj, Pid::pid()) -> wx:wx object()
Types:

bj = wx:wx_object() | atom() | pid()
Sets the controlling process of the object handle.

reply(X1::{pid(), Tag::term()}, Reply::term()) -> pid()
Get the pid of the object handle.

12 | Ericsson AB. All Rights Reserved.: wxErlang

wxAcceleratorEntry

wxAcceleratorEntry

Erlang module

An object used by an application wishing to create an accelerator table (seewxAccel er at or Tabl e).
See: wxAccel er at or Tabl e, wxW ndow. set Accel er at or Tabl e/ 2
wxWidgets docs: wxAccelerator Entry

Data Types

wxAcceleratorEntry() = wx:wx object()

Exports

new() -> wxAcceleratorEntry()

new(Options :: [Option]) -> wxAcceleratorEntry()
new(Entry) -> wxAcceleratorEntry()
Types:

Entry = wxAcceleratorEntry()
Copy ctor.

getCommand(This) -> integer()
Types:
This = wxAcceleratorEntry()
Returns the command identifier for the accelerator table entry.

getFlags(This) -> integer()
Types.

This = wxAcceleratorEntry()
Returns the flags for the accelerator table entry.

getKeyCode(This) -> integer()
Types.

This = wxAcceleratorEntry()
Returns the keycode for the accelerator table entry.

set(This, Flags, KeyCode, Cmd) -> ok
Types.

This = wxAcceleratorEntry()

Flags = KeyCode = Cmd = integer()

set(This, Flags, KeyCode, Cmd, Options :: [Option]) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 13

href

wxAcceleratorEntry

This = wxAcceleratorEntry()
Flags = KeyCode = Cmd = integer()
Option = {item, wxMenultem:wxMenultem()}

Setsthe accelerator entry parameters.

destroy(This :: wxAcceleratorEntry()) -> ok
Destroys the object.

14 | Ericsson AB. All Rights Reserved.: wxErlang

wxAcceleratorTable

wxAcceleratorTable

Erlang module

An accelerator table allows the application to specify atable of keyboard shortcuts for menu or button commands.

The object wxNullAcceleratorTable is defined to be a table with no data, and is the initial accelerator table for a
window.

Example:

Remark: An accelerator takes precedence over normal processing and can be a convenient way to program some event
handling. For example, you can use an accelerator table to enable a dialog with a multi-line text control to accept
CTRL-Enter as meaning 'OK".

Predefined objects (include wx.hrl): 2wxNullAcceleratorTable
See: wxAccel erat or Ent ry, wxW ndow: set Accel er at or Tabl e/ 2
wxWidgets docs: wxAccelerator Table

Data Types

wxAcceleratorTable() = wx:wx object()

Exports

new() -> wxAcceleratorTable()
Default ctor.

new(N, Entries) -> wxAcceleratorTable()
Types.

N = integer()

Entries = [wxAcceleratorEntry:wxAcceleratorEntry()]
Initializes the accelerator table from an array of wxAccel erat or Entry.

destroy(This :: wxAcceleratorTable()) -> ok
DestroysthewxAccel er at or Tabl e object.
See overview_refcount_destruct for moreinfo.

ok(This) -> boolean()
Types.

This = wxAcceleratorTable()
See i sCk/ 1.

isOk(This) -> boolean()
Types.

This = wxAcceleratorTable()
Returns true if the accelerator tableisvalid.

Ericsson AB. All Rights Reserved.: wxErlang | 15

href

wxActivateEvent

wxActivateEvent

Erlang module

An activate event is sent when awindow or application is being activated or deactivated.

Note: Until wxWidgets 3.1.0 activation events could be sent by wxMSW when the window was minimized. This
reflected the native MSW behaviour but was often surprising and unexpected, so starting from 3.1.0 such events are
not sent any more when the window isin the minimized state.

See: Overview events, WwxApp: : | sAct i ve (not implemented in wx)
This classis derived (and can use functions) from: wxEvent
wxWidgets docs: wxActivateEvent

Events

Usewx Evt Handl er: connect / 3 withwxAct i vat eEvent Type to subscribe to events of thistype.

Data Types

wxActivateEvent() = wx:wx object()

wxActivate() =
#wxActivate{type = wxActivateEvent:wxActivateEventType(),
active = boolean()}

wxActivateEventType() = activate | activate app | hibernate

Exports

getActive(This) -> boolean()
Types:
This = wxActivateEvent()
Returnstrueif the application or window is being activated, false otherwise.

16 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxArtProvider

wxArtProvider

Erlang module

WXArt Provi der classis used to customize the look of wxWidgets application.

When wxWidgets needs to display an icon or a bitmap (e.g. in the standard file dialog), it does not use a hard-coded
resource but asks wxAr t Pr ovi der for it instead. This way users can plug in their own wxAr t Pr ovi der class
and easily replace standard art with their own version.

All that is needed is to derive a class from WXAr t Provi der, override
either its wWxArtProvider::CreateBitmp() (not implemented in wx) and/or its
WxArt Provi der:: Createl conBundl e() (not implemented in wx) methods and register the provider with
WxArt Provi der: : Push() (notimplementedinwx):

If you need bitmap images (of the same artwork) that should be displayed at different sizes you should probably
consider overriding wxAr t Pr ovi der : : Cr eat el conBundl e (not implemented in wx) and supplying icon
bundles that contain different bitmap sizes.

There's another way of taking advantage of this class: you can use it in your code and use platform native icons as
provided by get Bi t map/ 2 or get | con/ 2.

Identifying art resources

Every bitmap and icon bundle are known to wxAr t Pr ovi der under an unique ID that is used when requesting a
resource from it. The ID is represented by the AwxArtID type and can have one of these predefined values (you can
see bitmaps represented by these constants in the page_samples_artprov):

Additionally, any string recognized by custom art providers registered using wWxAr t Provi der: : Push (not
implemented in wx) may be used.

Note: When running under GTK+ 2, GTK+ stock item IDs (e.g. " gt k- cdr omi') may be used as well: For alist
of the GTK+ stock items please refer to the GTK+ documentation page. It is aso possible to load icons from the
current icon theme by specifying their name (without extension and directory components). Icon themes recognized
by GTK+ follow the freedesktop.org | con Themes specification. Note that themes are not guaranteed to contain all
icons, so WX Ar t Provi der may return AwxNullBitmap or wxNulllcon. The default theme is typically instaled in
/usr/sharel/icons/hicolor.

Clients

Thecl i ent istheentity that callswxAr t Provi der 'sget Bi t map/ 2 or get | con/ 2 function. It is represented
by wxClientl D type and can have one of these values:

Client ID serve as a hint to wxAr t Provi der that is supposed to help it to choose the best looking bitmap. For
exampleit is often desirable to use slightly different icons in menus and toolbars even though they represent the same
action (e.g. WxART_FILE_OPEN). Remember that thisis really only a hint for wxAr t Pr ovi der - it is common
that get Bi t map/ 2 returnsidentical bitmap for different client values!

See: Examples, wxAr t Pr ovi der , usage; stock ID list
wxWidgets docs: wxArtProvider

Ericsson AB. All Rights Reserved.: wxErlang | 17

href
href
href
href

wxArtProvider

Data Types

wxArtProvider() = wx:wx object()

Exports
getBitmap(Id) -> wxBitmap:wxBitmap()
Types:

Id = unicode:chardata()

getBitmap(Id, Options :: [Option]) -> wxBitmap:wxBitmap()

Types.
Id = unicode:chardata()
Option =

{client, unicode:chardata()} |
{size, {W :: integer(), H :: integer()}}

Query registered providers for bitmap with given ID.
Return: The bitmap if one of registered providers recognizes the ID or wxNullBitmap otherwise.

getIcon(Id) -> wxIcon:wxIcon()
Types.
Id = unicode:chardata()

getIcon(Id, Options :: [Option]) -> wxIcon:wxIcon()
Types:

Id = unicode:chardata()

Option =

{client, unicode:chardata()} |
{size, {W :: integer(), H :: integer()}}

Sameasget Bi t map/ 2, but return awx| con object (or AwxNulllcon on failure).

18 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiDockArt

wxAuiDockArt

Erlang module

wxAui DockArt ispart of the wxAUI class framework. See also overview_aui.

wxAui DockAr t isthe art provider: provides all drawing functionality to the wxAui dock manager. This allows the
dock manager to have a pluggable look-and-feel.

By default, awxAui Manager uses an instance of this class called wxAui Def aul t DockArt (not implemented
in wx) which provides bitmap art and a colour scheme that is adapted to the major platforms look. You
can either derive from that class to alter its behaviour or write a completely new dock art class. Call
wxAui Manager : set Art Provi der/ 2 to force wxAUI to use your new dock art provider.

See: wxAui Manager , wxAui Panel nf o
wxWidgets docs: wxAuiDockArt

Data Types

wxAuiDockArt () = wx:wx _object()

Exports

getColour(This, Id) -> wx:wx colour4()
Types:

This = wxAuiDockArt()

Id = integer()
Get the colour of a certain setting.

i d can be one of the colour values of wxAui PaneDockArt Set ti ng.

getFont(This, Id) -> wxFont:wxFont()
Types:

This = wxAuiDockArt()

Id = integer()
Get afont setting.

getMetric(This, Id) -> integer()
Types:
This = wxAuiDockArt()
Id = integer()
Get the value of a certain setting.
i d can be one of the size values of wxAui PaneDockArt Setti ng.

setColour(This, Id, Colour) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 19

href

wxAuiDockArt

This = wxAuiDockArt()
Id = integer()
Colour = wx:wx _colour()
Set a certain setting with the value col our .

i d can be one of the colour values of wxAui PaneDockArt Setti ng.

setFont(This, Id, Font) -> ok
Types.

This = wxAuiDockArt()

Id = integer()

Font = wxFont:wxFont()
Set afont setting.

setMetric(This, Id, New val) -> ok
Types:
This = wxAuiDockArt()
Id = New val = integer()
Set acertain setting with the value new _val .
i d can be one of the size values of wxAui PaneDockArt Setti ng.

20 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiManagerEvent

wxAuiManagerEvent

Erlang module

Event used to indicate various actions taken with wx Aui Manager .
SeewxAui Manager for available event types.

See: wxAui Manager , wxAui Panel nf o

This classis derived (and can use functions) from: wx Event
wxWidge